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Abstract

Machine learning (ML) technologies hold the potential to solve open-ended user needs,
thanks to their flexibility that enables adaptive behaviors that cannot be explicitly repre-
sented in code and their scalability in replicating the behaviors across multiple computers.
However, preparing tailored ML models for each specific need poses challenges, including
dependency on substantial computational resources and difficulty in formulating problems
to be solved by ML. Therefore, this dissertation introduces the idea of using off-the-shelf
ML models—models already prepared and accessible publicly—to address open-ended user
needs. Nonetheless, off-the-shelf models may not always completely suit user needs. To
address this gap, the dissertation proposes an approach that reconciles off-the-shelf models
with user needs through interaction design, based on conceptualizing the relationship
between humans and ML models as bivariate, not as univariate.

This dissertation presents two strategies as actionable guidance for realizing such
interaction designs: 1) utilizing human cognitive processes to identify subproblems tractable
with off-the-shelf ML models and 2) fostering human learning to effectively use off-the-shelf
ML models. It then showcases concrete examples of interaction designs derived from these
strategies against five different domains: video-based lectures, intellectual tasks, photo
editing, music composition, and speech transcription. Additionally, by confirming their
effectiveness, this dissertation demonstrates that these strategies can derive interaction
designs addressing diverse user needs using off-the-shelf models. This work offers flexible and
sustainable solutions by giving an eye to possibilities that are outside of existing guidelines
for interaction designs with ML, such as those based on human-centered AI. I believe this
proposed approach can serve as a concept that enables developers and practitioners to
generate new interaction designs to address their needs using off-the-shelf ML models.
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1 Introduction

The compensating advantage of a long immaturity is that it enables ontogenetic
pathways that incorporate significant amounts of individual learning and cogni-
tion, which typically result in more flexible behavioral and cognitive adaptations.
– Michael Tomasello [300]

Human’s brain has incredible plasticity. Our brain continuously changes its neural
connections morphologically in response to external environmental and situational changes,
enabling us to learn new concepts and acquire new behaviors throughout our lifespan [268].
For instance, it has been observed that London taxi drivers tend to have larger hippocampi,
an area associated with spatial navigation, showing a correlation to the length of their
careers [190]. Furthermore, there are numerous known cases where individuals, having
suffered severe brain trauma resulting in the loss of certain functions, have managed to regain
those functions through the reallocation and reprogramming of other brain regions [152,
45]. This special feature of brains allows us to take a sociogenetic strategy. This means
that, beyond merely acquiring advantageous traits through genetic mutations, humans have
significantly accelerated their evolutionary progress by transmitting and merging knowledge
and experiences through social learning [300]. By investing in the brain’s plasticity, despite
the risks associated with long immaturity–—during which time individuals require protection
while they learn from the environment—we have developed sophisticated languages and
complex social systems [114].

Partially inspired by the mechanisms of the brain that enable this special ability, neural
networks were invented. Neural network, one of the machine learning (ML) methods, learns
patterns and underlying structures of datasets by updating parameters (often referred
to as weights), imitating the changes in connection strength between neurons [237]. Its
capability to approximate structures representable by any (Borel measurable) function has
been theoretically known since the 1980s [121]. However, the concurrent advancements
in computing power and the increased availability of large-scale data have significantly
broadened the potential applications of the method across various tasks. Consequently, ML
technologies including neural networks are now practically employed in various societal
contexts, such as credit scoring, local policing, car driving, and online dating [241].

In supporting the expansion of such applications, two key attributes of ML can be
highlighted [213]:

Flexibility Through learning from datasets, it is possible to exhibit adaptive behaviors that
cannot be explicitly represented in program code. This allows for the development of
solutions tailored to complex and dynamic scenarios that pre-coded solutions cannot
easily address.

Scalability Once the learning process is complete and the results, such as weights, are
saved as models, it becomes feasible to replicate the behaviors in a parallel manner,
involving multiple computers. This greatly enhances the capacity to handle large-scale
tasks and widespread application deployment.

A symbolic example is demonstrated by a local cucumber farmer in Japan. This farmer
has developed its own ML system to classify cucumbers into nine different grades, thereby
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reducing the workload of farming tasks [154]. The grading of cucumbers is based on
criteria such as thickness and curvature, but these are not quantitatively defined, making
it challenging to construct a deterministic classification system even using sensors. The
farmer overcame this challenge by collecting images of cucumbers for each grade and using
ML to discern these differences. Furthermore, it allows the simultaneous classification of
numerous cucumbers and, by replicating the acquired model, enables other farmers to
automate their cucumber classification processes. This example suggests the open-ended
potential of unseen ML applications not only for tasks in agriculture but also for those in
various other fields.

However, there are significant barriers that hinder the further expansion of the applica-
tions of ML.

Lack of necessary programming skills Not all practitioners possess the programming
capabilities to build ML systems like this farmer.

Limited access to sufficient computational resources ML often requires extensive
computation using dedicated hardware, such as graphical processing units (GPUs),
which may not be readily accessible to many.

Ambiguity in tasks to apply ML A majority of real-world tasks are carried out based
on even more ambiguous criteria than cucumber classification, making it unclear what
behaviors should be expected for ML. This ambiguity complicates the construction of
appropriate datasets.

Difficulty in comprehensive consideration of environmental factors Even if the ex-
pected behaviors for ML are determined, dataset construction involves considering a
plethora of environmental factors. For instance, in tasks based on image classification,
failing to account for variables such as camera devices and image acquisition conditions
in an ecologically valid manner could lead to poorly behaved ML systems.

Considering these barriers, I believe that realizing a world where end-users individually
tailor ML models to address their open-ended needs in a grassroots manner remains a
challenging prospect.

Instead, in this dissertation, I propose an approach to surmount this challenge by
utilizing off-the-shelf ML models. Here, off-the-shelf models refer to those that have already
been prepared for specific tasks and whose functions are available for access, often via the
Internet. By employing these models, my approach seeks to bypass the barriers associated
with preparing ML models while addressing the open-ended user needs. A crucial aspect
here is interaction design, as illustrated in Figure 1. Informed by the insights from human-
computer interaction (HCI), the proposed approach bridges the gap between end-users
(humans) and ML models (computers) by establishing suitable interactions between them.

1.1 Research scope

The aim of this dissertation is to provide actionable guidance on designing effective inter-
actions using off-the-shelf ML models. As will be reviewed in Section 3.1, there has long
been a discourse on the design of interactive systems using ML and artificial intelligent (AI)
technologies. For instance, as early as 1962, Engelbart [77] mentioned the importance of
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Carefully designed interactions can fill the gap between 
off-the-shelf machine learning models and users' open-ended needs.

Open-ended 
 user needs

Off-the-shelf 
ML models

Interaction 
design

Figure 1: Conceptual illustration of the proposed approach that exploits interaction design to
reconcile off-the-shelf ML models with open-ended user needs.

interaction design in the context of proposing the use of computing technologies to augment
human intelligence. In the 1990s, the idea of intelligent user interface was associated with
vigorous discussions on effective interaction design strategies using ML and AI technolo-
gies [112, 118]. More recently, a new series of guidelines have been presented considering the
contemporary expansion of applications of ML and AI [6, 356]. However, these discussions
fundamentally assume the existence of an ML model tailored for a specific task. Therefore,
when attempting to circumvent the aforementioned barriers by using off-the-shelf models,
they may not be able to be directly applied or may require additional considerations.

In light of this, this dissertation introduces novel strategies for leveraging off-the-shelf
ML models to address various user needs. Here, the underlying idea of the strategies
is to conceptualize the relationship between humans and ML models not as univariate,
but as bivariate. In other words, the previous discussions have mainly focused on the
ML side, such as customizing ML models and ameliorating their presentation through
interaction design, to make ML models more approachable to humans. Meanwhile, the
above conceptualization also considers making the human side more approachable to ML
models with the power of interaction design, leveraging the plastic nature of humans.
This idea derives the following strategies. The first one is to utilize human cognitive
processes to identify subproblems tractable with off-the-shelf ML models. This
is predicated on the point that within the broad spectrum of open-ended needs, there
are often common factors where humans experience difficulty and can benefit from the
support of computers. By revisiting human cognitive processes and determining which
subproblems, if solved, would lead to effective support for end-users, it becomes possible to
exploit off-the-shelf models that address these same factors. Through effective interaction
design, these subproblems can then be connected to the ultimate user needs. The second
one is to foster human learning to effectively use off-the-shelf ML models. This
becomes necessary when there is still a gap between the subproblems tractable by the
off-the-shelf model and the user needs. In such cases, well-considered interaction design can
guide users to enhance their understanding of the behaviors and limitations of off-the-shelf
models and skills to cooperate with the models. While this approach might require some
effort from the user side, it can be highly beneficial as it fulfills their needs without the
burden of preparing new ML models. This perspective is unique to the situations using
off-the-shelf models and represents an extension of traditional discussions on interaction
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design using ML and AI technologies.
To validate the effectiveness of the two strategies, this dissertation takes the methodology

informed by concept-oriented research [282, 119]. Here, concept refers to design knowledge
that is abstracted from particular instances and has the potential to be appropriated by
researchers and practitioners to enable new particulars instantiations [119]. Similarly, this
dissertation examines five concrete examples of interaction systems that were designed
based on the strategies to clarify their effectiveness and limitations and derive actionable
guidance, as outlined in Section 1.2. I believe that by showcasing specific examples in such
a wide array of situations and their effectiveness, the utility of the proposed strategies in
addressing open-ended user needs is illustrated. Furthermore, this dissertation synthesizes
the observations and findings from all these examples to discuss the effectiveness of the
proposed approach as well as its limitations and future directions so that it serves as a
concept that developers and practitioners can appropriate to deliver a new interactive
system harnessing off-the-shelf ML models.

1.2 Dissertation overview

As outlined above, this dissertation explores the effectiveness and limitations of the intro-
duced strategies to present actionable guidance on designing effective interactions using
off-the-shelf ML models. While its main body is dedicated to examining the five examples
of interaction designs that were generated by the two strategies, the rest of the dissertation
is structured in the following manner.

• Chapter 2 first introduces the background of various ML technologies that underpin
this dissertation, referencing research I have conducted using tailored ML models.
Building on this, it explores how off-the-shelf ML models are created and shared and
discusses the difficulties and risks associated with preparing tailored ML models to
address specific user needs, highlighting various factors that motivated this research.

• Chapter 3 reviews the research threads on guidelines for interaction design that enable
users to benefit from ML technologies and explains how the proposed approach,
focusing on off-the-shelf models, can complement these guidelines. It then describes
the research methodology of this dissertation and presents the research questions that
will be examined in the following chapters.

• Chapter 4 discusses how off-the-shelf models can address the user need to maintain
attention in video-based learning situations, especially when learners are temporarily
distracted. This chapter demonstrates that an intervention designed based on human
cognitive processes enables off-the-shelf models that simply detect moments of distrac-
tion to effectively support learners. Additionally, it shows that such an intervention
can function without frustrating learners, even if the accuracy of these models is not
high. The main body of this chapter is based on a paper presented at the 2021 ACM
CHI Conference on Human Factors in Computing Systems [11] in collaboration with
Riku Arakawa.

• Chapter 5 explores methods to address the user needs of intellectual workers seeking to
avoid task procrastination, based on insights into human cognitive processes related to
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persuasive communication. This chapter exhibits that, through carefully constructing
interaction designs, it is possible to engage users without preparing tailored models
specific to a particular task domain or user characteristics. The main body of this
chapter is based on a paper presented at the 2023 ACM CHI Conference on Human
Factors in Computing Systems [14] in collaboration with Riku Arakawa and Dr.
Masataka Goto.

• Chapter 6 examines how off-the-shelf models can contribute to creativity in photo edit-
ing by leveraging human cognitive processes through parametric design. Specifically,
it confirms that an interaction design enabled by a new computational framework can
bridge the gap between end-to-end ML technologies based on clearly-defined goals and
human exploratory processes based on loosely-specified goals. The main body of this
chapter is based on a paper presented at the 30th International Joint Conference on
Artificial Intelligence [345] in collaboration with Dr. Yuki Koyama and Dr. Masataka
Goto.

• Chapter 7 explores interaction designs that facilitate users in learning how to effectively
utilize off-the-shelf models. Specifically, the chapter focuses on the context of computer-
supported music composition and presents an interaction design that fosters novice
users’ understanding of musical knowledge and the capabilities of the models. It
then confirms that the presented interaction design can promote their utilization of
off-the-shelf models, serving as a basis for their creative processes. The main body of
this chapter is based on a paper presented at the 24th International Society for Music
Information Retrieval Conference [344] in collaboration with Dr. Masataka Goto.

• Chapter 8 applies a similar approach to addressing the user need for efficient speech
transcription. It specifically demonstrates how an interaction design that fosters
users’ skills in respeaking can effectively facilitate collaboration between humans and
off-the-shelf models for transcribing unclear speech. The main body of this chapter is
based on a paper presented at the 27th ACM International Conference on Intelligent
User Interface [13] in collaboration with Riku Arakawa and Dr. Masataka Goto.

• Chapter 9 presents a reflection on the five specific examples and synthesizes their
observations and findings. This chapter examines the potency and scope of the
proposed approach, elaborating on the promising directions and limitations it presents
for generating new interaction designs. It also discusses the ethical considerations
that are required to expand the application of the proposed approach.

• Lastly, Chapter 10 concludes the entire dissertation.

1.3 Research contribution

The contributions of this dissertation are three-fold.
Firstly, through five specific examples of interaction designs, this dissertation demon-

strates that interaction design can induce the significant applicability of using off-the-shelf
ML models. This approach becomes increasingly important in creating a sustainable
ecosystem for the application of ML technologies, especially considering the difficulties and
risks associated with preparing tailored ML models, as will be discussed in Section 2.3.
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Particularly, with the advent of large language and multimodal models, I anticipate that
the vast majority of developers and practitioners shift towards using off-the-shelf models
via application programming interfaces (APIs) or service as a service (SaaS), rather than
preparing and serving their tailored models. This suggests the growing importance of the
proposed approach.

Secondly, this dissertation presents actionable strategies for deriving interaction designs
to address open-ended user needs using off-the-shelf models. Notably, as mentioned above,
previous guidelines on interaction design using ML and AI technologies have primarily
assumed the preparation of ML models to meet specific user needs. In contrast, this
dissertation illustrates strategies in scenarios where such models cannot be assumed, and
thus, different considerations are required. This would be useful not only for researchers
but also for developers and practitioners in developing interactive systems tailored to their
specific needs.

Thirdly, this dissertation concretely demonstrates how such interactive systems can be
implemented, through five actual examples. These systems span different domains such as
text, images, and sound and are realized in various implementation forms, including Web
applications, browser extensions, and native applications. They can serve as valuable refer-
ences for the grassroots development of situation-specific interactive systems. Moreover, the
effectiveness of these systems is validated using a wide range of methods, offering researchers
insights into facets of evaluation for interactive systems employing ML technologies.
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2 Background

2.1 Basic paradigm of machine learning

As a fundamental branch of AI, ML technologies encompass several paradigms such as
supervised, self-supervised, and unsupervised learning [28, 29]. The most prominent of
these is supervised learning. This takes a dataset composed of pairs of input data and
corresponding output, discerns patterns or the underlying structure in the dataset, and
makes a prediction of the corresponding output for new, unseen inputs. Such a learning
process is known as training, and the datasets used for this purpose are referred to as
training data(sets). Numerous methods have been proposed to realize supervised learning,
including support vector machines [28] and gradient boosting [50], which can be utilized
for detecting moments when users are distracted from their operation history in PC [347,
346] or predicting appropriate avatar motion from music information [343], for instance.
In recent years, neural networks have significantly expanded their application scope, as
mentioned in Chapter 1. For example, supervised learning using neural networks can be
applied to computer security, specifically, malware detection [349, 350]. In this research,
I developed a model capable of malware classification by training a convolutional neural
network (CNN), a type of neural network, using image input data derived from malware
binary data and output labels indicating the type of malware. Furthermore, by integrating
an attention mechanism into the CNN, I showed that it is possible to identify the specific
areas in the input data that were crucial in the decision-making process of the model
(Figure 2), making the model more interpretable and trustworthy.

Supervised learning can be used to predict more complex outputs, far beyond simple
labels, by using Generative Adversarial Networks (GANs) and other generative models [95,
35]. GANs [95] are designed to produce intricate and high-dimensional data, such as images,
music, or text, leveraging two neural networks that work in tandem. Large language models
are based on a large-scale neural network that is trained on vast datasets of text, learning
to predict the next word in a sequence, thereby enabling them to generate text that closely
mimics human writing styles [35]. However, the evolution of these methods has led to
an exponential increase in the number of parameters within models, which in turn not
only necessitates larger datasets for training [68, 231] but also invites various challenges
described in Section 2.3.

Self-supervised learning enables training on vast amounts of data without the necessity
of labeling them [29], typically by generating pseudo-labels from the input data based on its
inherent structure. For example, it can be utilized to train a model capable of distinguishing
between various singers’ voices with a dataset that consists of a large number of singing
voices while lacking explicit information about the singer [351]. In this research, I trained a
neural network to consider two singing voice samples taken from the same song as belonging
to the same singer, while treating samples obtained by computationally altering in pitch or
tempo or extracted from different songs as belonging to different singers (Figure 3). This
approach enables the model to learn and differentiate between unique singer characteristics
solely based on the properties of the voice samples. Self-supervised learning reduces the
burden of preparing output labels, but its dependency on large datasets and substantial
computational resources remains unchanged.

Unsupervised learning also operates without labeled data, instead analyzing and finding
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Figure 2: Workflow of classifying malware samples and finding important areas using convolutional
neural network [350].

patterns or underlying structures within the data itself, using methods like clustering [28]. It
can adaptively process streaming data, continuously learning and updating models based on
new, unlabeled information, and thus, often used for anomaly detection [44]. For example,
I demonstrated that, in executive coaching, applying unsupervised learning for anomaly
detection on clients’ behavior information can effectively identify key moments in coaching
sessions [12, 10, 9]. This is because anomaly detection can find sudden changes in their
behavioral trends, while considering each client’s behavioral characteristics, by comparing
the current and past behavior information (Figure 4). However, unsupervised learning,
especially those operating in an online manner, tends to exhibit behaviors specialized to
the data at hand, making them less amenable to scalability—one of the advantages of ML
outlined in Chapter 1. Due to this, this dissertation mainly focuses on supervised and
self-supervised learning, considering the use of their off-the-shelf models to benefit from
ML technologies without preparing tailored models.

2.2 Current landscape of machine learning model creation

As previously mentioned, by saving the parameters acquired through training as a model,
we can reuse it, serving as a foundation for one of the key advantages of ML technologies:
scalability. Specifically, models trained for particular purposes are referred to as pre-
trained models [106]. Among these, those shared in a publicly accessible manner are
categorized as off-the-shelf models. The origin of the widespread practice of publicly sharing
many pretrained models can be attributed to the fact that programming frameworks and
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Figure 3: (a) Self-supervised learning enables capturing unique singer characteristics without explicit
singer labels. (b) The model can be used for singer identification or other downstream tasks [350].

Figure 4: Anomaly detection based on unsupervised learning allows us to capture sudden changes
in the nonverbal behavior of a client, which helps coaches infer the client’s internal status.

implementations of ML have largely been supported by an open-source community spanning
academia, industry, and start-ups [214]. To date, numerous pretrained models have been
made available on open-source platforms like GitHub [203], and several dedicated platforms
for exchanging off-the-shelf models have also emerged [141]. Among them, the most
prominent is HuggingFace, where Castaño et al. [43] analyzed more than 380,000 models
shared and illustrated a diverse range of off-the-shelf models in domains such as natural
language processing, computer vision, audio, and multimodal processing. Meanwhile, a
survey by Jiang et al. [140] of HuggingFace users indicated that, as the number of parameters
in pretrained models increases, it becomes more difficult for users to further customize
these models by themselves due to the required computational resource.

On the other hand, functionalities of ML models are also being offered in a manner
akin to SaaS, hosted on cloud computing platforms [232, 204]. Known as MLaaS (Machine
Learning as a Service), this approach allows users to send inputs via an API, which are
then processed by ML models, with the results returned [245, 87]. This trend is partly
driven by the increasing costs of computation resources required for the preparation and
management of ML models, as detailed in Section 2.3. These services can also be classified
under the definition of off-the-shelf models, given their public accessibility. Employing them
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enables developers and practitioners to easily use the functionalities of ML models, but it
does come with a limitation on the freedom to customize these models. Given the current
landscape of creating, sharing, and serving ML models, we can expect that developing
approaches to utilize off-the-shelf models against various user needs leads to benefit a wider
audience with this ecosystem.

2.3 Difficulties and risks of using tailored machine learning models

While such a wide range of ML technologies has been developed, there remains a significant
barrier in preparing tailored ML models to meet each specific user need, as mentioned
in Chapter 1. The cost of preparing datasets could be mitigated by self-supervised or
unsupervised learning methods, yet access to the computational resources necessary for
training is not always readily available. Particularly, it is known that the expressive power of
neural networks is constrained in accordance with the exponential increase in the number of
parameters [146], and these years have seen the release of models with significantly expanded
scales [23]. This also implies an increase in the computational costs of training. For instance,
the training cost of PaLM [54], one of the flagship large language models released in 2022,
was reported to be around $8 million USD [197], while the training cost of GPT-4 [222],
released in 2023, is said to be in the order of $1000 million USD [218]. Furthermore, the
increasing computational cost is linked to a rise in carbon dioxide emissions, potentially
leading to environmental harm [286, 324]. For example, the training of PaLM [54] resulted in
the emission of 271.43 t of CO2. While there are movements to incentivize the development
of more environmentally friendly ML models [113, 333], continuing to train ML models in
the current manner is criticized for not being sustainable [23, 333]. At the very least, it is
impractical for practitioners to prepare tailored ML models for each open-ended user need,
considering these environmental and sustainability concerns.

In addition to these issues, another significant barrier is the difficulty in formulating
a problem to be solved by ML models to effectively address user needs. For instance,
Weiner [325] identifies one of the common pitfalls in the application of AI technologies as
solving the wrong problem—the attempt to resolve superficial aspects rather than addressing
the root cause underlying the needs. Similarly, Joshi [143] highlights the challenges in
selecting appropriate solutions or technologies from a holistic perspective. Meanwhile,
Nahar [207] points out the challenge in identifying the necessary data for training models, in
addition to these points. Dataset construction also frequently serves as a breeding ground
for difficulties [254, 289]. For instance, the collected data can often misalign with the
actual problem intended to be solved by ML models. This results in representation bias,
leading to reduced performance or inappropriate behaviors [289, 199]. Furthermore, careful
consideration is required to ensure that datasets do not infringe upon others’ intellectual
property or privacy [227]. In sum, these factors demonstrate the difficulty of engaging in
problem formulation and dataset construction by taking all of them into account to prepare
tailored ML models.

Even once tailored ML models are acquired, further risks lurk in their deployment,
particularly when used in interactive systems accessible to other users. Notably, such
systems are susceptible to adversarial examples, which can trigger unintended behaviors by
subtly altering inputs with malicious noise [96]. For example, I have shown the possibility
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of attacking object recognition or speech recognition models with those that humans feel
unsuspicious, as presented in Figure 5, even in real-world scenarios [348, 342]. In such cases,
the responsibility of the model creators might come into question. Additionally, techniques
have been proposed that allow third parties to extract training data, posing a risk of private
data being stolen [85, 39].

Figure 5: Moth-like patches on a STOP sign can make autonomous driving cars misrecognize it as
Speed Limit 80 [342].

In conclusion, I argue that preparing tailored ML models to address open-ended user
needs is impractical and unsustainable. Instead, considering the availability of many off-
the-shelf models as shared resources, as discussed in Section 2.2, it is more reasonable to
effectively utilize them. From this perspective, this dissertation considers an approach
to reconcile off-the-shelf models with user needs, aiming for a practical and sustainable
application of ML technologies.
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3 Proposed approach

As introduced in Chapter 1, this dissertation proposes an approach of building effective
interaction designs that reconcile off-the-shelf ML models with open-ended user needs.
The proposed approach involves two different strategies: utilize human cognitive processes
to identify subproblems tractable with off-the-shelf ML models and foster human learning
to effectively use off-the-shelf ML models. This chapter first reviews previous literature
about effective interaction design using ML technologies to show how these strategies can
complement existing guidelines. On top of the literature, I then formulate research questions
to be confirmed through the five examples presented in Chapters 4 to 8 to demonstrate the
validity of the strategies.

3.1 Guidelines for interaction design with machine learning technologies

The concept of addressing various tasks through the interaction between humans and
intelligent machines was proposed long before the term machine learning became widely
used. Engelbart [77] referred to this as the H-LAM/T system (Human using Language,
Artifacts, Methodology, in which he is Trained), as illustrated in Figure 6. The H-LAM/T
system is a framework that encompasses how human intellectual activities can be enhanced
by external artifacts, which include not only computers but also other tools like paper and
pens. A particularly remarkable aspect of his vision is the emphasis on human training as
an integral component. He believed that for intellectual activities to be effectively generated
through interactions with artifacts, it is also necessary for humans to acquire appropriate
skills.

Figure 6: Original illustration of H-LAM/T system (taken from [77])

Later, with the evolution of ML and AI technologies, systems that leverage these
technologies to assist users in their tasks have been practically developed, sparking vigorous
discussions on interaction design within this context. One prominent trend in this arena was
the research on intelligent user interfaces. Hefley and Murray [112] provided the overview
of this concept in the proceedings of the first international conference on intelligent user
interfaces (ACM IUI). At that time, the primary goal of the collaboration of ML and AI
with users was to perform tasks within computers in a simplified and effective manner. This
led to a focus on systems that could be used by users without much experience, with many
early studies concentrating on systems using conversational agents [137]. For example,
Horvitz [122] conceptualized mixed-initiative user interfaces, emphasizing the importance
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of allowing users to override the decisions of intelligent systems. Additionally, these studies
yielded some guidance common to concurrent human-AI interaction, such as being cautious
of the iterative refinement of intelligent systems, as it can lead to discrepancies with users’
mental models of the systems’ behavior [118]. However, one of the challenges at that time
was the limitation in accuracy improvement partially due to the lack of large-scale data,
which posed constraints on further application expansion [108].

The concurrent advent of ML technologies has completely transformed the landscape.
Nowadays, ML is known for exhibiting performance comparable to humans not only in
conventional ML tasks like image [109] and speech [338] recognition but also in complex tasks,
ranging from Go [273] and race simulations [335] to examinations for medical licensing [93]
and professional engineering licensing [238]. This demanded a novel design strategy for
human-AI interaction [366], and concurrently, various studies have been conducted to
explore effective interaction design. For example, Yang et al. [356] identified the common
challenges encountered in the design of human-AI interaction, based on interviews with
practitioners [355] and a systematic review of past research [354]. Amershi et al. [6] have
developed a guideline consisting of 18 generally applicable items, and it is officially published
by Microsoft. Other industrial companies, like Google and Apple, have also published
their guidelines [331], and Yildirim et al. [358] examined on how Google’s guideline is
being utilized by practitioners. They found that the guidelines are not only beneficial for
interaction design in production but are also effectively used for internal education and
cross-functional alignment. However, it should be noted that these guidelines, like Google’s
one that includes guidance on dataset construction, mainly assume the self-preparation of
tailored ML models. On the other hand, many of the items in these guidelines are still
relevant and applicable to interaction design using off-the-shelf models. Given this context,
this dissertation aims to complement these guidelines by presenting strategies for effectively
utilizing off-the-shelf models and expanding the application of ML technologies in situations
where preparing ML models is challenging.

Here, I should mention that the concept of human-centered AI [270, 271] is gaining
attention in regard to the overall design of ML systems, which inevitably includes interaction
design. This concept advocates for more attention to the benefits and risks of ML systems for
end-users and encourages providing controllability to them. Notably, this idea is reflected
in the AI strategy of European Union [272], aiming at the construction of intelligent
systems that are adaptive to individual users. For the realization of human-centered AI,
the application of, for example, explainable AI technologies—which make it possible to
provide users with explanations of model behaviors—and privacy-preserving ML algorithms
has been expected [191, 339]. On the other hand, the possibility of leveraging off-the-shelf
models is not particularly mentioned under this concept, as in the guidelines for human-AI
interaction. Rather, the reliance on explainable AI and privacy-preserving algorithms can
be understood as the consequence of an implicit assumption that ML models would be
customized or served.

I acknowledge that the approach proposed in this dissertation might not be able to
be categorized as fully adherent to the definition of human-centered AI, as it focuses not
only on making ML models adaptive to humans, but also on adapting human factors to
off-the-shelf models. Meanwhile, this approach, which assumes human cooperation and
sometimes encourages human learning, could be considered closer to Engelbart’s early
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idea [77]. Here, some researchers noted that in the 1980s, HCI started to put more focus on
technology-oriented research aimed at usability and problem solving, than examining human
factors [99, 51]. In this regard, although the proposed approach is aimed at problem solving,
it would offer insights into effective human-AI interaction from the attempt to reconnect
these two aspects. Specifically, Norman [216] criticized that human-centered design can
undermine human adaptability to technology, and Yildirim [358] reported that practitioners
using the guideline for human-AI interaction had difficulties reconciling user-centric design
process with AI-based solutions. Given that, I hope that this dissertation presents a
supplemental perspective to concurrent discussions on human-centered AI.

3.2 From univariate to bivariate understanding of human-AI interaction

To complement the body of knowledge provided by the above literature, this dissertation
specifically focuses on interaction design for effectively utilizing off-the-shelf ML models.
The underlying philosophy of the aforementioned strategies lies in conceptualizing the
relationship between off-the-shelf models and end-users as a bivariate problem. More
specifically, the regular approach to designing interaction using ML models has assumed
user needs as given or to be clarified in advance, and then optimized ML models and
their presentation. In other words, the factors on the user side have been considered as a
fixed variable, and the design process is modeled as a univariate problem. In contrast, the
proposed approach considers user needs and behaviors to address the needs as adaptable
and explores interaction designs that reconcile off-the-shelf models with them. Increasing
the degrees of freedom, particularly when one variable—ML models—is constrained to
off-the-shelf options, enhances the potential for reaching better solutions. On the other
hand, this raises the complexity of the problem, making it desirable to have fair strategies
to identify suitable interaction designs. For these reasons, this dissertation proposes two
novel strategies with a focus on the adaptability of user needs and behaviors, as illustrated
in Figure 7.

Open-ended user needs Off-the-shelf ML models

Interaction design

Strategy #1: Utilize human cognitive processes to identify 
subproblems tractable with off-the-shelf ML models 

Strategy #2: fostering human learning to 
effectively use off-the-shelf ML models

Figure 7: Conceptual illustration of the strategies presented to realize the proposed approach with
a focus on the adaptability of user needs and behaviors.

3.2.1 Strategy #1: Utilize human cognitive processes to identify subproblems
tractable with off-the-shelf ML models

The first strategy involves understanding and exploiting users’ cognitive processes. While
I would not assert that the regular approach neglects the users’ cognitive processes, the
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critical aspect here is the effort to limit the problem that we aim to address with ML models.
This strategy can be likened to matchmaking, which Bly and Churchill [31] proposed as an
approach for interaction design that starts from technological seeds and explores situations
where they can be applied. The proposed strategy analogically constrains the problem to
be solved within the capability of the off-the-shelf models.

However, it does not necessarily start from the technological side. Instead, understanding
users’ cognitive processes would precede because it is crucial to identify which subproblems
within the user needs should be addressed first. An example can be illustrated by using the
concept of Mindless Computing, which is actually used in Chapter 4. It was introduced by
Adams et al. [1] as an alternative to persuasive technologies, being inspired by Kahneman’s
dual-process theory [145]. More specifically, it exhibited the potential of designing behavior
change technologies to function subtly and effortlessly, without requiring users’ conscious
awareness to be effective, when intervening in their habits or behaviors in domains like
health, productivity, or environmental sustainability. By employing this cognitive-process-
based approach, we can construct an interaction design that fosters appropriate behavioral
change even when no off-the-shelf models can achieve such behavioral change at the desired
level. Further, identifying subproblems that can be addressed through interaction design
based on cognitive processes, even without the application of machine learning, may lead to
uncovering commonalities in the other subproblems that remain unaddressed by interaction
design and necessitate the use of ML technologies. Consequently, this strategy increases
the likelihood of finding existing off-the-shelf models that have already addressed these
subproblems.

3.2.2 Strategy #2: Foster human learning to effectively use off-the-shelf models
ML models

The second strategy entails building interaction designs that foster users’ understanding of
the behaviors and limitations of off-the-shelf models and cultivate their skills for collaborating
with the models. Of course, how users comprehend the behavior of computing systems and
construct mental models has been a longstanding research topic in HCI [168, 42]. These
insights have been leveraged to design interfaces that are easily learnable [234], leading
to the recognition of learnability as a significant component of usability [98]. However,
interaction design involving the use of ML models presents more complex challenges. This
complexity arises because the probabilistic mechanism of ML, which is the source of its
flexibility, also complicates the explicit explanation of its holistic behavior. Thus, it is
known that users, especially those with non-technical backgrounds, often find it challenging
to understand the behavior of interactive systems employing ML [304], which can persist
even with the use of explainable AI [76]. Furthermore, while discussions on learnability have
traditionally focused on the procedural usage of systems, effectively utilizing off-the-shelf
models can demand knowledge and skills that extend beyond mere procedural usages to
encompass task-related aspects.

At the same time, the primary motivation for employing off-the-shelf models is to
eliminate the burden of preparing tailored ML models. In this context, it would be counter-
productive if the learning effort required for end-users becomes substantial. Ideally, derived
interaction designs should be functional without human learning, and their effectiveness
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should be enhanced as users understand the models’ behavior and cultivate appropriate
skills. Therefore, this dissertation proposes a strategy that focuses on realizing interaction
designs that do not require but rather foster human learning.

3.3 Research methodology

As mentioned above, this dissertation seeks to contribute to the body of knowledge by
presenting actionable guidance, rather than explaining the advantages of individual inter-
action designs. In this respect, there has been a broad discourse in HCI regarding how
research on interaction design can contribute to scientific knowledge [41, 329, 17]. For
example, research through design [78, 376] has been widely employed in HCI to extract
knowledge from the iterative attempts to address real-world issues through interaction
design. The outcome of such research primarily takes the form of artifacts or systems,
sometimes accompanied by insights from actual use cases or demonstration of possible
design spaces [89]. Zimmerman et al. [377] mentioned that, while research through design
can inform knowledge that invites new systems, its connection to such knowledge is not
straightforward and unpredictable.

Therefore, I referred to concept-oriented research [282, 119] to inform the research
methodology of this dissertation. In particular, the approach of utilizing off-the-shelf
ML models by seeing their relationship to end-users as bivariate problems satisfies the
definition of concept, as it is abstracted beyond particular instances and can be realized in
many different ways. At the same time, concept does not assume the universality on its
applicability, and thus, clarifying the scope is required. Based on this definition, Höök and
Löwgren [119] presented three facets to validate concepts:

Contestable Is the contribution inventive and novel for the academic community in
question?

Defensible Is the contribution grounded empirically, analytically, and theoretically?

Substantive Is the contribution relevant to the community in question?

Here, I argue that the contestable and substantive aspects of the proposed approach are
presented above by reviewing previous discussions and guidelines for interaction design
with ML technologies. In particular, we can see the large new opportunities enabled by
specifically focusing on off-the-shelf models, as implied by Sections 2.2 and 2.3. Thus, the
following chapters are mainly dedicated to confirming the defensibility of the proposed
approach by presenting five concrete examples and abstracting their insights, as outlined in
Section 1.2.

3.4 Research questions

The above discussion assumes that the proposed approach can generate new interaction
designs that enable the application of off-the-shelf ML models. To ground this in a defensible
manner, the effectiveness and limitations of these two strategies need to be examined, which
poses the following two research questions.

RQ1: Can the above strategies generate diverse interaction designs against
open-ended user needs using off-the-shelf ML models?
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Answer to RQ1 Answer to RQ2

Strategy #1
Presented by deriving interaction designs for video-based
lectures (Chapter 4), intellectural tasks (Chapter 5), and
photo editing (Chapter 6).

Presented by exam-
ining the effective-
ness of the left in-
teraction designs in
each chapter.Strategy #2

Presented by deriving interaction designs for music compo-
sition (Chapter 7) and speech transcription (Chapter 8).

Table 1: Overview of the contribution of each chapter to providing answers to the research questions.

Here, the two strategies were introduced to circumvent the barrier of preparing tailored
models by utilizing off-the-shelf ML models. Thus, to confirm their capability to generate
new interaction designs against the open-ended nature of user needs, it is imperative that
the strategies can generate a diverse range of interaction designs. This dissertation attempts
to validate the possible scope and limitations by deriving interaction designs for different
tasks across multiple domains using the two strategies.

RQ2: Can the interaction designs generated from the strategies effectively
address user needs by using off-the-shelf ML models?

Even if we succeed in generating such interaction designs, they must actually address the
underlying user needs so that the strategies are actually appropriated by researchers and
practitioners for enabling new interaction designs. From this perspective, this dissertation
implements these interaction designs as actual interactive systems to confirm their feasibility.
Also, based on various evaluation methods informed by HCI literature, I evaluate the
effectiveness of each system to answer this research question.

If these two research questions are supported, it confirms the potency of the proposed
approach to reconciling off-the-shelf ML models with open-ended user needs through
interaction design, as well as the effectiveness of the two strategies introduced to realize this
approach. This also means that the proposed approach can serve as a strong concept [119],
which can contribute to the creation of a world where ML technologies are applied to
various tasks by practitioners, as envisioned in Chapter 1. To this end, Chapters 4 to 8 will
explore five examples of interaction designs, each derived from the strategies, to address
RQ1, and their effectiveness will be confirmed in each chapter, thereby providing answers
to RQ2, as summarized in Table 1.
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4 Mindless Attractor: An interaction design for helping peo-
ple maintain attention in video-based learning with off-the-
shelf distraction detection models

In this chapter, I explore the application of off-the-shelf ML models in video-based commu-
nication. Throughout the past decades, video-based communication has steadily become
a viable alternative to face-to-face communication [81, 328]. In particular, schools have
leveraged video-based learning to provide educational opportunities for distanced students,
as massive open online courses have done [196, 104]. Moreover, the COVID-19 pandemic
has precipitated the transition to video-based communication for the purpose of preventing
infection [59, 155], especially in the context of education [148, 94]. However, it has been
noted that people often have trouble maintaining their attention in video-based communi-
cations [160, 161], as they can concurrently perform other tasks, like texting or accessing
social media using a smartphone [219]. In particular, it can often occur that people get
distracted by side tasks even though they have the motivation to attend in video-based
communications [161]. Thus, it would be fruitful if computers could help learners pay
attention to a video when they get distracted temporarily as long as they have a basic
motivation for taking part in video-based learning from a long-term perspective.

Nevertheless, addressing this need by preparing a tailored ML model, for example,
through replicating the behavior of teachers who identify and address inattentive students
in a classroom, poses significant challenges. This difficulty arises because such teachers
intervene with students based on the combination of their experience and the complex,
multimodal information they observe. This amplifies the challenges mentioned in Section 2.3,
particularly the serious difficulty in the problem formulation. Then, Strategy #1 presented
in Section 3.2 guides us to consider the cognitive process of learners to determine a
subproblem that is tractable with off-the-shelf models. Here, looking back to the nature
of human communications, we often change the tone of our voices intentionally to draw
listeners’ attention [208, 291]. Also, humans are known to respond to such paralinguistic
cues, which often occur when a topic shift or turn-taking happens [340]. Based on this
observation, it is expected that we can help learners return their attention to videos by
computationally changing the tone of voice during video-based learning situations. Then,
it will help learners pay attention computationally if an off-the-shelf model can simply
determine when they are distracted. Fortunately, advances in ML technologies have enabled
the automatic estimation of a user’s attention level from a facial video [298].

Importantly, this interaction design is also plausible in terms of human cognitive
processes related to behavioral change. The power of this design is supported by the
concept of Mindless Computing—behavior-changing technologies that leverage human
biases or unconscious behaviors [1]. Here, I acknowledge that a straightforward approach is
to explicitly alert them when they seem not to be paying attention to the video, as Xiao
and Wang [337] did. However, such an approach has a strong reliance on user motivation
and is likely to fail when learners do not have a strong motivation in video-based learning,
especially when the learners’ attention is occupied with side tasks. On the other hand, given
that Mindless Computing does not consume a user’s conscious awareness to be effective,
Adams et al. [1] stated that this design does not rely on the user’s motivation. In addition,
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the independence from the user’s conscious awareness enables such behavior influencing
technologies to work without interfering with the user’s primary task, which suits our
situation (i.e., use during video-based learning). Furthermore, I argue that such a mindless
intervention has a high affinity with sensing modules based on off-the-shelf ML models.
That is, if we explicitly alert users, they can be distracted and frustrated by misinformed
alerts caused due to erroneous false-positive detection. Here, such behaviors are known
to lead users to ignore the result of an ML model [70, 65]. On the other hand, in terms
of avoiding the burden explained in Section 2.3, it is challenging to improve the accuracy
of the models by customizing them. Still, this mindless intervention can mitigate such
negative effects due to false positives because it is based on human cognitive processes and
does not necessarily consume users’ conscious awareness.

In this chapter, I present a novel interaction design, Mindless Attractor, which compu-
tationally leverages the nature of our speech communication, and examine its effectiveness
in the situation of helping users in video-based learning return their attention to the video.
For this purpose, I first conducted an experiment to confirm that the mindless interven-
tion was effective in helping users refocus their attention without consuming conscious
awareness. A sensing module using an off-the-shelf ML model was subsequently combined
with this mindless intervention to evaluate its effectiveness under the possibility of false-
positive detection, compared to a conventional alerting approach. The series of experiments
showed the advantages of the presented interaction design, especially in combination with
off-the-shelf models. In other words, it was suggested that we can open up the way to
apply an off-the-shelf model to address the user need in video-based learning even without
customizing the model. I believe that these results present how Strategy #1 in Section 3.2
can inform an effective interaction design, partially answering RQ1 and RQ2.

4.1 Related work

To situate this work, I first examine previous literature on interaction techniques for
video-based learning, particularly those focusing on learners’ attention. Then, conventional
alert-based techniques for drawing human attention are reviewed to discuss why they would
not fit our purposes. I also explore previous studies regarding the nature of human speech
communication, as this is a foundation of the mindless intervention for drawing users’
attention.

4.1.1 Attention-related interaction techniques for video-based learning

As mentioned above, opportunities for video-based communication are increasing, and
many interaction techniques have thus been proposed to enhance the experience of such
communications. Some prior studies have proposed interaction techniques centering on the
context of participants’ attention [60, 266, 337], as it has been pointed out that people
often have difficulty maintaining their attention during video-based communication [160,
161]. These techniques benefit from the significant effort that has been devoted to estimat-
ing participants’ attentiveness based on visual cues, such as face movement [298], body
postures [364], and gaze [27, 134, 309]. They then use the estimation results to enhance
learners’ performance, for instance, in video-based learning, given that learners’ attention
and engagement are strongly related to their learning performance [15, 60].
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For example, Gaze Tutor is a gaze-reactive intelligent tutoring system for video-based
learning [60]. Using a conventional eye tracker, it estimates the learner’s attention level
from gaze direction based on a simple rule assuming that off-screen gaze patterns imply
distraction. When the system detects that the learner is not focusing on the video, the tutor
agent stops the video and alerts them explicitly (e.g., by saying “Please pay attention”).
Although their experiment showed its effectiveness in reorienting participants’ attention,
the intervention method left room for improvement, as the authors mentioned in their
discussion. Specifically, they found individual differences in the efficacy of the alert-based
intervention, including that some participants never followed the alerts. Accordingly, the
authors noted that alternate intervention approaches, including indirect feedback, could
be implemented. Another example that computationally utilizes the estimated attention
level during video-based learning was provided by Sharma et al. [266]. Similar to Gaze
Tutor, their system provides users with direct feedback, such as simple red rectangles on
the screen, with the purpose of improving users’ attention.

As can be inferred from these studies, previous research has mainly considered explicit
alerting as an intervention method for video-based learning. However, the findings from
these studies complement our concern, which is discussed at the beginning of this chapter
based on the results of Xiao et al. [337]. That is, such interventions rely on users’ motivation
and may not work effectively when learners are distracted by side tasks. This necessitates
the exploration of a better interaction design to realize a situation where an off-the-shelf
ML model that detects a distracted moment can help them.

4.1.2 Alerting techniques for drawing human attention

Drawing users’ attention is one of the crucial components of HCI, not being limited to
video-based learning. Many researchers have dealt with a wide range of topics in this
area, such as Internet advertisements [211], smartphone notifications [283], and alerting
systems [103]. Consequently, previous studies have developed many methods suitable for
individual situations using diverse perceptual modalities. One of the most popular strategies
is to provide users with visual stimulation. For example, Red Alert is a visual alerting
system that uses a translucent orange-red flash to mask a screen, designed to warn pilots
of potential collisions in air traffic control [258]. Audio stimuli have also been favorably
employed as a means to alert users. BBeep is a collision-avoidance system that can emit
a beep sound to alert pedestrians around a visually impaired user to clear the way [147].
Another strategy is the use of the tactile modality. BuzzWear is a wrist-worn tactile display
to notify users on the go by combining different parameters of the tactile stimulus [167].
As can be observed in these examples, most systems adopt explicit stimuli to notify users,
assuming that they will take action after their attention is drawn to the target.

However, Adams et al. [1] pointed out that such alerting strategies would not be optimal
when used within persuasive technologies designed to influence user behavior. Unlike critical
situations (e.g., air traffic control), where it can be expected that users will be motivated
to follow an alert from a computer, not all scenarios for inducing behavioral change can
assume that users are highly motivated to do so. In such cases, an alert that requires the
user’s conscious awareness and effort to work would likely fail due to a temporary lack of
motivation or potentially counteract positive aspects of the intervention by frustrating them.
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Thus, the authors recommended the Mindless Computing strategy of leveraging human
biases or unconscious behaviors, which diminishes reliance on users’ conscious awareness. It
also enables intervening with users without interfering with their primary activities, whereas
alerting users explicitly can interrupt such activities. Furthermore, they complimented the
advantage of the mindless intervention by mentioning its long-term effectiveness, which
persists even though users are aware of the biases behind the interventions [320]. Then, our
next question would be how to implement such an intervention in the situation of video-based
learning, which leads us to make use of the nature of human speech communication.

4.1.3 Speech communication techniques for drawing human attention

Speech is one of the most natural modalities of human communication. It consists not
only of linguistic aspects but also of paralinguistic aspects, such as pitch, volume, and
speed, which play an important role in conveying nuance or emotion [301]. While the use of
paralinguistic aspects is a natural habit in our daily communication [235], it is also a common
practice to intentionally create changes in such paralinguistic parameters during speaking
to draw listeners’ attention [136]. The relationship between speech parameters and their
effects in drawing attention has generated considerable research interest in understanding
human speech communication [208, 291]. For example, Xu [340] suggested that an increase
in pitch when starting a new topic can draw listeners’ attention. Moreover, a similar
effect of drawing attention has also been observed in infants hearing their mothers’ speech,
who naturally vary their pitch [288]. The idea that humans unconsciously respond to
paralinguistic cues is further supported by Zatoree and Gandour [365], who verified that
human neural mechanisms are sensitive to such spectral and temporal acoustic properties.

Based on these results, I speculate that leveraging this nature of human speech com-
munication by computationally varying speech parameters can naturally draw listeners’
attention. More specifically, if a person who is losing their attention to a video hears
speech with altered pitch or volume, they will respond to such a change, regardless of their
motivation to pay attention. Such an intervention aligns with the concept of Mindless
Computing [1] and thus is expected to work when side tasks occupy users’ attention. In
the following section, I elaborate on the rationale for using human speech alterations to
draw attention in video-based learning situations.

4.2 Mindless Attractor

In this chapter, I present Mindless Attractor for the purpose of helping users in video-based
learning return their attention to the video. Guided by the strategies to utilize off-the-shelf
ML models, it leverages the nature of speech communication to intervene with users based
on the concept of Mindless Computing [1], This section explains the details of Mindless
Attractor, starting by discussing its design rationale and requirements.

4.2.1 Why mindless?

As stated at the beginning of this chapter, the aim of the presented interaction design
is to support video-based learning, given the growing demand for it, by establishing a
suitable computational intervention for users who are not paying attention to the video.
The difficulty is that we cannot assume all users to be highly motivated to follow such an
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intervention for maintaining attention when distracted by side tasks, even though they have a
basic motivation for video-based learning. Thus, as mentioned in Section 4.1.2, conventional
alerting approaches would not be optimal, and we need to consider an intervention approach
that does not rely on users’ motivations. Here, even when a user is not focusing on the
video, interventions that interrupt the user should be avoided since such approaches might
lead them to miss subsequent content. These points led us to adopt an interaction design
based on Mindless Computing [1] that leverages human biases or unconscious behaviors to
induce behavioral change. Since such an intervention does not consume the user’s conscious
awareness to be effective, it is considered less reliant on their motivation to pay attention.
Moreover, it enables us to design a less interruptive intervention than explicit alerts, as
Adams et al. [1] confirmed that their mindless approach using auditory feedback could
influence people’s behavior when talking without annoying them. Then, we can implement
an interactive system that effectively helps users by utilizing an off-the-shelf model that
simply detects their distracted moments.

Furthermore, it can be presumed that the mindless intervention reveals a new advantage
when integrated with a sensing module based on off-the-shelf models, as mentioned at the
beginning of this chapter. More specifically, although ML technologies enable various sensing
scenarios, humans tend to evaluate mistakes of such ML-based systems more severely than
human mistakes [70]. In addition, the trust that ML-based systems lose as a result of their
failure is usually greater than the trust they gain from their success [361]. Consequently,
people often become less hesitant to override outputs from ML-based systems after seeing
their failures [65]. Moreover, it has been suggested that people with a high cognitive load
will have less trust in interactions with ML-based systems [372]. These discussions imply
the risk posed by the false-positive detection of the sensing module in intervening with
users—that is, mistakenly alerting them in an explicit manner during video-based learning
situations would frustrate them and lead them to disregard the alerts. On the other hand,
since the mindless intervention does not consume conscious awareness, unlike the alerting
approach, it might mitigate the negative effects caused by false positives.

4.2.2 Designing Mindless Attractor

The above discussions rationalize the use of the mindless intervention to transform complex
user needs in video-based learning situations into a subproblem tractable by an off-the-shelf
ML model. In this presented interaction design, I specifically leveraged the nature of human
speech communication as human biases or unconscious behaviors behind the intervention,
based on Section 4.1.3. Then, we need to consider several requirements to make the
intervention work while video-based learning, as follows.

Avoid interruption due to interventions. Considering that video-based learning is
sometimes delivered in the form of live streams or in a synchronous manner [20],
interrupting users due to interventions should be avoided, as it can cause them to miss
information and counteract the aim of helping them pay attention. This requirement
is one reason to eliminate the use of alerting approaches, as their interruptive aspect
was discussed in Section 4.2.1.

Use a modality that users will not neglect. To intervene with users who are not pay-
ing attention to the video, it is important to use a modality that is always reachable
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to users. In this regard, though it is possible to leverage human perceptual bias to
implement the mindless intervention by showing something on a display, this would
not be suitable because the user can take their eyes off the display, especially when
performing side tasks using a smartphone [219]. On the other hand, it seems more
unlikely that the user would not hear the audio due to muting it while in video-based
learning situations.

Function without external devices. Though the use of external devices would extend
the range of possible interventions, such as using a tactile stimulus [167], it raises an
additional cost to utilize the interventions. Therefore, it is desirable to implement
an intervention that could be integrated into video-based learning situations without
requiring external devices.

As reviewed in Section 4.1.3, it has been suggested that humans unconsciously respond
to paralinguistic cues in speech, such as a change in pitch, volume, and speed. For the
presented interaction design, the perturbation of the pitch or volume of the voice in the
video was used to help users refocus their attention. Here, speed change was not employed
because it would be difficult to maintain time-series consistency when video-based learning
is conducted in a synchronous manner (e.g., live lectures [20]). In addition, the perturbation
is enabled and disabled repeatedly when the user is seemingly not paying attention to
the video, as Adams et al. [1] emphasized the importance of cues to trigger different
perceptions and sensations in designing mindless approaches. Otherwise, if we activated
the perturbation once when the user became distracted and kept it thereafter, the user
would have less opportunity to refocus their attention as they became acclimated to the
changed pitch or volume.

4.2.3 Implementation

Based on the above consideration, I implemented an interactive system that presents the
mindless intervention by using Python and PyAudio1 to perturb the audio signal in real
time. The audio signal was captured in 16 kHz, and the perturbation process was activated
each 1

16 sec to ensure that the perturbed signal was delivered without significant delay. The
pitch shift was performed using a library named rubberband2 through time-shifting and
resampling the signal via Fourier transform. The volume change was performed by directly
multiplying the waveform double or halve. In addition, as mentioned in Section 4.2.1, the
mindless intervention is expected to incorporate a sensing module based on an off-the-shelf
ML model that monitors users’ behavior and detects when they are distracted. The detailed
implementation regarding how the sensing module is constructed using an off-the-shelf
model is later explained in Section 4.5.3.

4.3 Hypotheses

Up to this point, I have introduced Mindless Attractor, which is designed to intervene with
users during video-based learning that incorporates a sensing module based on off-the-shelf
ML models. It computationally perturbs the pitch and volume of the voice in the video in

1https://people.csail.mit.edu/hubert/pyaudio/docs/
2https://github.com/breakfastquay/rubberband
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real time to refocus users’ attention when they seem distracted from the video. The design
rationale for the presented interaction design, which was discussed in Section 4.2.2, imposes
the following hypotheses to be verified to ensure its validity and effectiveness.

First, as discussed in Section 4.2.1, this interaction design is based on the concept of
Mindless Computing [1] so as to ensure that the intervention works without relying on
user high motivation and without interrupting users. To satisfy these points, we should
examine whether Mindless Attractor can influence users’ behavior in a mindless manner,
i.e., without consuming their conscious awareness.

H1: Mindless Attractor is an effective means to refocus the attention of users
in video-based learning situations without consuming their conscious awareness.

If H1 holds, we have two choices for inducing a behavioral change in users (i.e., drawing
their attention back to the video): alerting users in an explicit manner or intervening in
a mindless manner. Here, as discussed in Section 4.2.1, it is expected that the mindless
intervention will be favored over alerting approaches when combined with a sensing module
based on an off-the-shelf ML model for detecting users’ distraction. More specifically, the
fact that such a sensing module may produce false positives implies the risk of mistakenly
intervening in users, which can be annoying when we alert them explicitly. This point
guides the following second hypothesis:

H2: Mindless Attractor is not only an effective means to refocus users’ attention
but is also preferred by users when combined with a sensing module based on
an off-the-shelf ML model, while the alerting approach is not accepted.

If these hypotheses are supported, we can pave the way for intervening with users in
real time to support their participation during video-based learning. Also, it becomes
an illustrative example showing the possibility of addressing such a user need with an
off-the-shelf model by carefully designing an interactive system based on human cognitive
processes, as discussed in Section 3.2. With this motivation, I evaluated these hypotheses
by conducting a series of experiments.

4.4 Experiment 1: Evaluation of H1

4.4.1 Design

To evaluate H1, I conducted an experiment that replicated video-based learning situations.
A within-participant design was used to compare a treatment condition using Mindless
Attractor with a control condition that did not intervene in participants. Then, H1 is
supported if the following two points are confirmed: Mindless Attractor helps participants
refocus their attention, and Mindless Attractor does not consume participants’ conscious
awareness.

4.4.2 Measure

Two measures were prepared in correspondence to the above two points to be confirmed:
recovery time and cognitive workload.

Recovery time This metric indicates the time that it took for participants to return
their attention to the video after losing focus. If Mindless Attractor helps participants
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refocus their attention, the time that they are distracted should be shortened in comparison
to the case in which no intervention was taken. To compute this metric, human annotations
were collected for each participant, denoting whether the participant was paying attention
or not. As explained later in Section 4.4.5, an experimenter who observed the state of the
participants annotated in real time so that the recovery time could be calculated later.

Cognitive Workload This metric was used to evaluate whether Mindless Attractor
consumed the participants’ conscious awareness or not. Here, measuring cognitive workload
is common in the previous studies proposing alerting approaches [258, 167]. Whereas
they aimed to show that their proposed approaches exhibited lower workload compared
to other possible approaches, this experiment compared the metric between the control
and treatment conditions. If the cognitive workload in the treatment condition is not
significantly different from that in the control condition, it suggests that Mindless Attractor
does not consume participants’ conscious awareness. In this experiment, the NASA-TLX
questionnaire [107, 37] was used to measure cognitive workload, in the same manner as the
previous studies [258, 167].

Note that it would be possible to evaluate whether Mindless Attractor consumes the
participants’ conscious awareness by asking them whether they noticed the perturbation.
However, to do so, it was necessary to conceal from the participants that they would be
subject to an intervention, which would create an unrealistic situation if we consider the
practical applications of the presented interaction design. More specifically, it is unlikely
that users in video-based learning would be subject to interventions without opt-in consent.
In other words, they would use Mindless Attractor of their own accord to focus on videos
or at least would be notified about the possibility of the intervention. In addition, as
mentioned in Section 4.1.2, Adams et al. [1] explained that the mindless approaches work
regardless of whether a user knows their mechanisms or not, as they do not depend on the
user’s conscious awareness. Thus, the participants were notified beforehand that they would
be subject to interventions and were presented with this measure based on NASA-TLX
afterward.

4.4.3 Material

To replicate a video-based learning situation, a video recording of a 30-minute lecture on
urban sociology was prepared. As this experiment was conducted remotely, the video was
presented to the participants using the screen-sharing function of Zoom.3 By following the
implementation described in Section 4.2.3, a client software was also prepared that modifies
Zoom’s audio output to perform the intervention. This software captures and perturbs the
audio output in real time when it receives an activation command from a control server via
WebSocket. Here, a pilot study was conducted in the same manner as Adams et al. [1] to
find the appropriate parameters for intervening without causing distractions. This led to
the implementation of the following four perturbation patterns: halving or doubling the
volume and lowering or raising the pitch by one tone. The software then activates one of the
four patterns randomly so as to enable the comparison of their effectiveness in helping the
participants refocus their attention. Since Zoom automatically removes noises and extracts
voices, it was confirmed that a naïve implementation of pitch shifting based on a fast Fourier

3https://zoom.us/
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transform would be sufficient for the purposes of this experiment. An experimenter console
was further prepared in the control server to record annotations concerning whether the
participant was paying attention or not. The console was implemented to enable sending
the activation and deactivation commands to the client software when the participants
started to divert their attention from the video and refocus their attention, respectively.

4.4.4 Participants

This experiment involved 10 participants, three of whom were female. They were recruited
via online communication in a local community where over 100 university students gathered.
As described later in Section 4.4.5, the current experimental procedure required participants
to be observed by a remote experimenter so that their state of attention could be annotated.
Therefore, they were asked to prepare a PC with a webcam in a quiet room and to enable
their faces to be captured.

4.4.5 Procedure

Each participant underwent one session of watching the 30-minute video using a computer
connected over Zoom, as mentioned in Section 4.4.3. To replicate the usual situation of video-
based learning, in which learners have some reasons to watch the video, the participants
were told in advance that they would be asked to write a few sentences summarizing the
video. At the same time, they were asked to bring their smartphones and told that the use
of smartphones was not prohibited so that they could be distracted as usual [219]. Then,
as depicted in Figure 8, each session was divided into two parts of 15 minutes each: one
with no intervention and the other involving interventions. To normalize the order effect,
the order of the two parts was balanced: five participants first experienced the part with
no intervention, and the others first experienced the part involving interventions. After
each part, the participant was asked to write a summary and fill out the questionnaire
measuring cognitive workload. Note that these two parts do not correspond to the control
and treatment conditions, as explained in the following paragraphs.

In the part involving interventions, an experimenter observed the state of a participant,
including their use of smartphones, and annotated whether they were paying attention to
the video or not. When the experimenter pressed a button on the experimenter console to
record the timestamp at which the participant diverted their attention from the video, the
console assigned either the control or treatment condition with a 50% probability of each.
Note that the selected condition was concealed from the experimenter in order to avoid
the experimenter bias in the annotations. If the treatment condition was assigned, the
console sent the activation command to the client, and the client then repeatedly enabled
and disabled one of the four perturbation patterns every 3 s, as explained in Section 4.2.2.
This intervention continued until the client received the deactivation command indicating
that the experimenter pressed another button to record the participant’s recovery from
the distraction. On the other hand, if the control condition was assigned, no command
was sent to the client. Consequently, based on the assigned conditions and the recorded
timestamps, the recovery time could be calculated and compared. The other part (with
no intervention) was prepared to evaluate the cognitive workload. Its cognitive workload
score was compared with that of the part involving interventions, which were activated on
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Figure 8: Example illustration of the procedure for the first experiment. (A) Half of the participants
first experienced the part with no intervention and then experienced the part involving interventions,
and (B) the others followed the reversed order.

a random basis. If the intervention did not consume the participant’s conscious awareness,
the scores of the two parts would not be significantly different. In addition, at the end of
the session, the participants were asked for their comments about their feelings or anything
they noticed. In total, the entire session took about an hour to complete.

4.4.6 Results

Recovery time As shown in Table 2, the mindless intervention significantly shortened
the recovery time according to the unpaired t-test (Cohen’s d = 1.0044, p < 0.0001). The
distribution of the recovery time is shown in Figure 9, which also confirms this reduction.
This result supports that Mindless Attractor helped participants refocus their attention.

I also investigated which of the four perturbation patterns (i.e., halving or doubling the

Table 2: Comparison of the recovery time and cognitive workload score between the control and
treatment conditions. The treatment condition involved the mindless intervention.

Measure Treatment Control p-value

Recovery time 17.71 s (±10.52 s) 32.25 s (±16.92 s) < 0.0001
Cognitive workload 26.00 (±10.32) 27.00 (±9.13) 0.5212
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Treatment Control

Figure 9: Distribution of the recovery time across each participant and the experimental conditions.

Table 3: Occurrence of the four perturbation patterns that were executed just before participants
returned their attention. The comparison with the total occurrence suggests that there was no
significant difference in effectiveness (p = 0.2794).

Perturbation
Halve the
volume

Double the
volume

Lower the
pitch

Raise the
pitch

Occurrence just before
19 7 14 16

participants returned their attention

Total occurrence 50 47 50 55

volume and lowering or raising the pitch by one tone) effectively helped participants refocus
their attention. Specifically, the last perturbation pattern before each time the participant
returned their attention was examined to count their occurrence, as shown in Table 3. This
examination is based on the assumption that the intervention just before the participant’s
attention returned is the cause of the change in the participant’s state. According to the
χ2-test comparing with the total occurrence, the results were not significantly different,
indicating that each pattern equally helped participants recover their attention (Cramer’s
V = 0.1220, p = 0.2794). In other words, it suggested no significant difference in the
effectiveness of the four perturbation patterns.

Cognitive workload Also, no significant difference was found in participants’ cognitive
load scores according to the paired t-test (Cohen’s d = 0.2110, p = 0.5212), as presented
in Table 2. That is, it is suggested that Mindless Attractor did not consume participants’
conscious awareness or at least did not negatively affect participants’ cognitive load by
consuming their conscious awareness. Thus, in combination with the effect on the recovery
time, H1 was supported.

Comments Also, the comments that the participants wrote at the end of the exper-
iment were examined. Here, three participants mentioned that they did not notice any
intervention, although they were informed of the intervention beforehand. Interestingly,
the recovery time for these three participants also showed a significant difference (Cohen’s
d = 0.8105, p = 0.0122) between the treatment (15.88 s on average) and control (28.34 s

on average) conditions. Thus, it is suggested that the mindless intervention worked even
when it was not noticed by participants, further supporting that Mindless Attractor did
not consume the participants’ conscious awareness. This point not only corroborates H1
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but also shows consistency with the discussion by Adams et al. [1]. It was also notable
that, although five participants mentioned that they noticed the changes in volume, no
participant recognized the changes in pitch. That is, although no significant difference
was found between the effectiveness of the four perturbation patterns in Table 3, their
noticeability varied, suggesting room for investigation.

Nevertheless, no participants regarded the mindless intervention as disruptive or annoy-
ing. Rather, two participants made positive comments about it:

I found it useful because it naturally brought my attention back to the video
when I thought something might have changed in the speech. (P1)

It was nice as it made me feel like...the computer was recommending me to
concentrate, rather than warning me. (P4)

In particular, the latter comment suggested that the mindless intervention can mitigate
the negative effect that might be caused by false-positive detection when combined with
a sensing module based on an off-the-shelf ML model. These results led to conducting a
second experiment to evaluate this possibility, as discussed in Section 4.3 when posing H2.

4.5 Experiment 2: Evaluation of H2

4.5.1 Design

To evaluate H2, another experiment was conducted in the same manner as Section 4.4,
replicating a video-based learning situation. However, in this case, a sensing module using
an off-the-shelf ML model was combined, instead of manually activating interventions, and
the effects of the mindless intervention and the alerting approach were compared. Here, a
within-participant design was used over three conditions: mindless, alerting, and control (no
intervention). The control condition was added to confirm that the mindless intervention
was at least effective in contributing to refocusing users’ attention as an interactive system
harnessing an ML-based sensing module. H2 is thus supported if the following two points are
confirmed: Mindless Attractor helps participants refocus their attention, and participants
favor Mindless Attractor over the alerting approach.

4.5.2 Measure

Similar to the first experiment, the time with regard to whether participants were paying
attention was measured. However, this experiment introduced a different approach for
evaluating the time factor (i.e., total distracted time instead of the recovery time) as well
as a measure for behavioral intention.

Total distracted time Although we have confirmed that Mindless Attractor can
help participants return their attention, it is desirable to investigate whether the total time
that they are distracted during video-based learning is reduced. In other words, it may be
possible that, though the mindless intervention shortened the recovery time, the participants
were distracted more frequently, especially when the mindless intervention was combined
with an ML-based sensing module having a risk of false positives. To compute this metric,
human annotations were collected for each participant, as in Section 4.4, and aggregated
the duration when the participants were not paying attention. If the total distracted time in
the mindless condition is significantly shorter than in the control condition, it is suggested
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that Mindless Attractor can make users more likely to pay attention, even in combination
with a sensing module based on an off-the-shelf model. It should be noted that, due to
the false negatives of such a sensing module, there would be a case when the intervention
is not triggered even when the participant is actually losing their attention and a case
when the intervention is deactivated before the participant refocus. Therefore, calculating
the recovery time as in Section 4.4.6 is not appropriate in this second experiment, further
rationalizing the introduction of the total distracted time as a different metric.

Behavioral intention This metric was prepared to evaluate whether the mindless
intervention was favored over the alerting approach. The concept of behavioral intention is
guided by the Technology Acceptance Model [64], which explains users’ attitudes towards
technologies and is frequently used to evaluate how likely individuals are to use the
technologies. Here, the questionnaire to measure behavioral intention was used in the
same manner as the previous studies [310]. Suppose this score in the mindless condition is
significantly better than that in the alerting condition. In that case, we can confirm that
Mindless Attractor can be favored over the alerting approach, especially when integrated
into an interactive system harnessing a sensing module based on an off-the-shelf model.

4.5.3 Material

Similar to the first experiment, a video recording of a 30-minute lecture on social sciences
was prepared. Again, the experiment was conducted remotely, and the video was presented
using Zoom’s screen-sharing function. However, this second experiment required a system
that automatically detects the status of participants’ attention. To implement this sensing
module, I followed previous studies that estimated participants’ attentiveness based on
their visual cues, as reviewed in Section 4.1.1. Specifically, the video stream of face images
of each participant was analyzed by leveraging an ML model that can detect their head
pose in real time. If the module detected that the participant was looking off the screen,
the system judged that the participant was failing to pay attention to the video lecture and
activated an intervention.

Figure 10 illustrates how the system processed the video streams of participants and
intervened in them. Here, videos were processed on a frame-by-frame basis in the following
manner. First, a human face was detected and located in each frame using an off-the-shelf
model of RetinaFace [66]. Face alignment was then performed to obtain facial keypoints
using another off-the-shelf model released by Fang et al. [79], which is known to estimate
keypoints with high accuracy. Based on the estimated facial keypoints, the head pose
was calculated by solving a perspective-n-point problem. Next, the estimated head pose
was passed to the experimenter’s PC, which checked whether the passed head direction
was off-screen or not. The experimenter had conducted a calibration process beforehand
to calculate the threshold for this judgment, in which participants were asked to track a
red circle that appeared and moved along the edge of the screen. Participants were told
to track the circle by moving their head, i.e., not following it only by moving their gaze.
The maximum head rotations for each direction (top–down and left–right) were calculated
and regarded as the range where the head is toward the screen. In other words, when the
estimated head pose was out of this range, then the system judged that the participant was
looking off the screen, and thus, losing their attention.
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Figure 10: Architecture of the entire system implemented for the second experiment.

While the participants were watching the video, changes in their state—i.e., whether
they were looking at the screen or not—were shared with another control server maintaining
a WebSocket connection with the client software. The control server then correspondingly
sent activation or deactivation commands in the same manner as the first experiment. All
of the above processes were performed in real time with a frame rate of 15 FPS.

In addition to the sensing module, an intervention to explicitly alert users was imple-
mented in the client software to be compared with the mindless intervention. In this case,
the client software played a short beep for 0.1 s, which followed the previous study’s use of
a beep alert [147], instead of perturbing the audio output. Once the alert was activated, it
replayed the same beep every 3 s until it received the deactivation command, in the same
manner as the mindless condition.

4.5.4 Participants

This experiment involved 20 participants, five of whom were female. They were recruited
in the same manner as the first experiment. Eight of the participants participated in the
first experiment, which had been held at least two weeks before this experiment. The
participants were asked to prepare a PC in a quiet room and to enable their faces to be
captured with a webcam, as in the first experiment.

4.5.5 Procedure

Similar to the first experiment, each participant experienced a session of watching the
30-minute video using a computer connected over Zoom. As before, the participants were
told in advance that they would be asked to write a few sentences summarizing the video and
also allowed to bring and use their smartphones in the session. As illustrated in Figure 11,
each session consisted of three parts lasting 10 minutes each: one with no intervention,
another with the mindless intervention, and a third with the alerting approach. The order
of these three parts was automatically randomized among participants, as described later
in this section. After each session, participants were asked to write a summary. They were
also asked to fill out the questionnaire measuring behavioral intention when they finished a
part with either the mindless intervention or the alerting approach. The scores between the
two conditions were compared to examine which approach participants favored.

Before starting the first session, the experimenter performed a calibration process to
determine the threshold for whether the participant’s head pose was out of the screen, as
described in Section 4.5.3. The experimenter explained that the participants should not
move their PCs until the entire process was complete and advised them to find a comfortable
position before the calibration process started. In each of the three parts, the experimenter
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Figure 11: Example illustration of the procedure for the second experiment. Each participant was
randomly assigned to one of six possible orders of the three conditions.

Table 4: Confusion matrix between the human annotations and the detection results of the ML-based
sensing module in regard to participants’ attentive state.

Detection result
Attentive Distracted

Human annotations
Attentive 435.4 min (68.5 %) 78.0 min (12.3 %)
Distracted 51.4 min (8.1 %) 70.7 min (11.1 %)

manually annotated whether the participant was paying attention to the video lecture,
similar to the first experiment. To avoid bias, the experimenter was blind to which of the
three conditions had been applied to the participant. Specifically, the control server (see
Figure 10) decided the order of conditions in each session, and the experimenter did not
have access to this information until the session ended. The obtained annotations were used
to calculate the total distracted time for each part, while the ML-based sensing module
triggered interventions to the participants in either the alerting or mindless condition, as
described in Section 4.5.3. In the alerting condition, participants were exposed to the beep
sound when the system judged that they were losing attention, whereas they were exposed
to perturbations in the speech in the mindless condition. In the control condition, the
client system did not intervene. In each part, the sequence of the system’s judgment was
recorded along with timestamps, which was later used to assess the accuracy of the sensing
module by comparing it with the human annotations. Finally, at the end of the session, the
participants were asked for their comments about their feelings or anything they noticed.
In total, the entire session took about an hour to complete.

4.5.6 Results

The experiment provided the following results.
Sensing accuracy I first examined the accuracy of the sensing module based on

the off-the-shelf model in detecting participants’ attentive state. Specifically, the human
annotations and the detection results of the module were compared, yielding Table 4. As
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a result, the accuracy across all the participants was 79.6 %, which was relatively close
to the previous study [298] that achieved the accuracy of 82–85 % using only head pose.
Note that the accuracy varied among participants (64.9–93.0 %), which implies that some
environmental factors (e.g., the distance to a camera or lighting conditions) might largely
affect the detection results. At the same time, the sensing module exhibited a lot of
false-positive detection, as its precision was 47.6 %, which suited the aim to investigate the
effect of Mindless Attracter while having a risk of false positives.

Total distracted time Next, based on the human annotations, the total distracted
time was calculated for each participant, as presented in Figure 12. A significant difference
was found among the three conditions according to ANOVA (F (2, 57) = 8.5773, η2 = 0.2313,
p = 0.0005), and thus conducted a post-hoc test. As a result, the control condition showed
significant differences against the mindless and alerting conditions (Cohen’s d = 1.1795,
p = 0.0013 and Cohen’s d = 1.0828, p = 0.0032, respectively). On the other hand, no
significant difference was found between the mindless and alerting conditions. From this
result, it was confirmed that Mindless Attractor is an effective means to refocus users’
attention even when combined with an ML-based sensing module, as the mindless condition
significantly reduced the total distracted time than the control condition. In addition, it is
notable that Mindless Attractor would work effectively as well as the conventional alerting
approaches since the mindless and alerting conditions showed similar distracted times.

I also examined how many times the participants got distracted because it was possible
that the mindless interventions increased the frequency even though the total distracted
time was reduced. As shown in Figure 13, no significant difference was found among the
three conditions (F (2, 57) = 0.1796, η2 = 0.0062, p = 0.8360). It can be explained as
follows: the participants were almost equally likely to lose focus in all three conditions,
but if there was an intervention, they often refocused their attention to the video earlier,
as confirmed in the first experiment. As a result, their distraction time in the mindless
and alerting conditions was significantly reduced than the control conditions. From these
results, we can conclude that H2 was supported in terms of the effectiveness of Mindless
Attractor.

Behavioral intention Lastly, participants’ scores of the behavioral intention were
compared between the mindless and alerting conditions. As presented in Figure 14, a
significant difference was found (Cohen’s d = 0.7025, p = 0.0054) according to the paired
t-test. This means that, compared to the alerting approach, the participants showed their
stronger intentions to use the implemented system when it is combined with the mindless
intervention. This result supports that Mindless Attractor is much preferred by users than
the alerting approach, as hypothesized as H2.

Comments The above results coincided with H2, confirming that Mindless Attractor
helps participants refocus their attention and is favored over a conventional alerting approach.
In addition, the comments obtained at the end of the experiment corroborated H2, especially
in regard to the unacceptability of the alerting approach.

I felt like the beep sound made me lose focus. It was frustrating, especially
when I was concentrating. (P9)

The beep felt like noise because it overlapped the speech though I wanted to
listen to what was being said. As a result, my concentration was more disrupted
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Figure 12: Comparison of partic-
ipants’ total distracted time. A
significant difference was found
between the control condition
and the other conditions.

Figure 13: Comparison of how
many times participants got dis-
tracted. No significant difference
was found between the three con-
ditions.

Figure 14: Comparison of
participants’ scores of the be-
havioral intention. A signifi-
cant difference was found be-
tween the mindless and alert-
ing conditions.

than the case that I had not used the system. (P12)

I thought the one with the beep sound might be a good signal until halfway
through, but then it came to ring repeatedly even though I was concentrating.
As a result, I stopped caring about the sound. (P2)

These comments confirmed the anticipation that explicitly alerting users based on false-
positive detection makes them distracted and frustrated, which can lead them to ignore
the intervention. In addition, one participant suggested that such negative effects can be
caused even when the intervention was activated by accurate detection:

I was disgusted by the alarm, which rang when I was using my smartphone for
googling a word I never heard. (P8)

In contrast, the mindless condition was totally favored, as follows:

In the part [of the mindless condition], I felt like I was able to focus on the
lecture relatively well. (P12)

I did not notice much of a change in the audio, but when I compare the three
parts, I seemed to be able to maintain my concentration the most. I think
having such a system that brings back my attention without making a big deal
will help me stay focused in usual situations. (P3)

When the pitch of the speech became higher, I paid attention to the video as I
felt strange a little. It did not provide a sense of being angry, compared to the
beep alarm. (P11)

These comments corresponded to the comparison of the scores of behavioral intention
(Figure 14).
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Furthermore, 17 of 20 participants agreed they often have trouble maintaining their
attention and computationally solving it would be beneficial, like:

I find it difficult to maintain my attention in such online situations because of
the lack of eyes around. (P1)

In addition, they suggested that the presented interaction design can be used outside
video-based learning situations.

I thought it would be nice to be able to introduce a similar system in offline
situations. I will appreciate it if some device such as a smartwatch helps me
refocus when I am losing my attention from an important conversation. (P4)

The obtained comments not only corroborated the effectiveness of Mindless Attractor
through supporting H2 but also highlighted the further potential of the presented interaction
design.

4.6 Discussion

So far, by verifying H1 and H2, I have demonstrated that Mindless Attractor works
effectively as a novel interaction design to support users’ participation during video-based
learning. In this section, I contemplate the findings of the experiments, envision future
application scenarios, and discuss limitations and future directions in terms of paving the
way for supporting users in video-based communication.

4.6.1 Necessity of mindless intervention in machine-learning-based interaction
design

The results of the second experiment supported H2, as participants favored the mindless
intervention, while the alerting approach was not accepted. Specifically, the obtained
comments suggested that participants were annoyed by the alerts when they were triggered
by false positives of the sensing module based on the off-the-shelf ML model. In other words,
mistakenly intervening in an explicit manner while users are concentrated on the primary
task can unnecessarily consume their conscious awareness and eventually disrupt their
experience. Indeed, such failures in designing interactive systems based on ML-based sensing
modules have been pointed out in a guideline for human-AI interaction [6]. That guideline
emphasized the importance of considering that such AI-infused systems may demonstrate
unpredictable behaviors due to false positives and false negatives. Consequently, it suggested
that an effective approach in designing AI-infused systems is to enable users to dismiss the
undesired functions instantly.

From this guideline, we can learn two points. First, the participants’ acceptance of
the presented interaction design can be attributed to the fact that it indirectly follows
this guideline by not consuming users’ conscious awareness, letting them not mind the
mistakenly triggered interventions without much cognitive workload. This suggests that
the design of Mindless Attractor can be applied to various cases as an intervention method
when integrated with ML models. Particularly, when we consider the use of off-the-shelf
models, this design would be a clue to finding a subproblem in user needs that is tractable
by the models. Second, such an existing guideline for human-AI interaction can also be
applied when we construct interaction design using off-the-shelf models. This implies that
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the strategies presented in Section 3.2 operate in parallel with existing guidelines and
complement them.

4.6.2 Limitations

Though the experiments have demonstrated that Mindless Attractor is a promising in-
teraction design, there are some limitations. Initially, further investigations involving a
greater number of participants and diverse lecture content are desirable to generalize the
results. For example, if a lecture is so attractive that learners are not distracted from
the video, the mindless intervention would not be necessary even though, at worst, it
would not be harmful, as its impact on cognitive load was not observed in Section 4.4.6.
Secondly, the experimental design was based on the discussion of Mindless Computing [1],
considering users whose motivation for obeying the intervention is not always assumed.
Specifically, the design was intended to nudge the participants not to be much motivated to
watch the video, like allowing the use of smartphones, and skipped the measurement of the
participants’ motivation in the experiments. However, this means that their results would
not necessarily guarantee the universal effectiveness of the intervention for users with any
level of motivation. Thus, evaluating participants’ motivation and exploring its correlation
with the efficacy of Mindless Attractor can be intriguing.

Furthermore, refining the design of alerts can mitigate the negative impact suggested in
the second experiment. While a simple beep was used as an alert, alternative methods to
inform users in less annoying manners are possible. In particular, Weiser and Brown [326,
327] conceptualized “calm technology” as a more acceptable communication channel from
computers. For example, alerting users with less explicit sounds (e.g., birds chirping) could
be preferred to a simple beep sound. In addition, if we ignore the requirement of using the
auditory modality, showing a status lamp on display is an alternative to informing users
that they are losing attention. However, as Adams et al. [1] pointed out, these techniques
require users’ conscious awareness (e.g., interpreting the status based on the lamp) to induce
behavioral change, while mindless computing does not. Therefore, Mindless Attractor can
be differentiated from alerting approaches in that it can work without consuming users’
conscious awareness, as suggested in the first experiment (see Section 4.4.6). That said, it
is desirable to explore sophisticated alerting approaches to draw further implications in
comparison to the mindless intervention.

At the same time, the design of the mindless intervention has also room for exploration.
Currently, as explained in Section 4.2.2, the perturbation of the pitch or volume of the
voice is employed based on the nature of human speech communication. Though the results
were not statistically examined in a participant-wise manner due to the small number of
perturbations activated for each participant, there were individual differences in terms
of their effectiveness, which would imply the possibility of personalizing the intervention
patterns. Moreover, human brains are known to show a special response to a self-voice [57] or
a familiar voice [21]. Thus, a possible intervention might involve computationally modifying
a voice so as to be similar to a self-voice or familiar voice when users are not paying
attention. This can be achieved through existing techniques for high-fidelity real-time voice
conversion [299, 8].

It would also be interesting to investigate whether the presented interaction design
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that helps learners pay attention contributes to their learning performance. Considering
that previous studies adopting explicit feedback to help learners pay attention have shown
a positive impact on performance [15, 337], the mindless intervention can be expected
to have a positive effect. This is because the mindless intervention exhibited an effect
in reducing distracted time while showing no significant impact on the cognitive load in
Section 4.4.6. Examining the long-term effect of the presented interaction design is also
intriguing. Though this design is based on the concept of Mindless Computing, which
Adams et al. [1] have described as having long-term effectiveness, it is difficult to deny,
without further investigation, the possibility that users will become acclimated to the
perturbations. However, even in this case, the combination with voice conversion could
be a remedy, as it enables as many patterns of interventions as the number of conversion
targets.

4.7 Summary

This chapter presented a novel interaction design, Mindless Attractor, which helps users
refocus their attention in a mindless manner. It was guided through considering how to
apply off-the-shelf ML models to such a complex user need and exploiting human cognitive
processes, as stated in Section 3.2. Specifically, the interaction design leverages the nature
of human speech communication and perturbs the voice that users hear when they are
detected as losing their attention by an off-the-shelf model. The effectiveness of Mindless
Attractor in a video-based learning context was confirmed in two-stage experiments: the
first experiment showed that it helped users refocus their attention without consuming
their conscious awareness, and the second experiment supported the effectiveness when
implemented as an interactive system with a sensing module using an off-the-shelf model.
The results partially answer the RQ1 and RQ2 of Section 3.4. We confirmed that Strategy
#1 can be used to construct a new interaction design for video-based learning situations
while using an off-the-shelf model, and the interaction design effectively addressed the user
need to maintain their attention.
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5 CatAlyst: An interaction design for preventing procrastina-
tion in intellectual tasks with off-the-shelf large generative
models

Given that many office workers perform intellectual tasks, such as writing, coding, and
editing slides, using computers every day, this chapter focuses on supporting intellectual
tasks using interaction design harnessing off-the-shelf ML models. During an intellectual
task, workers are known to often experience a lack of progress and stay away from it because
of the high cognitive load required to perform the task [188, 225, 314]. Such behavior often
leads to procrastination, causing stress and degraded self-efficacy [163, 83, 257, 22]. In
this context, several approaches to increasing workers’ engagement via intervention have
been proposed in the HCI literature. For example, presenting an encouraging message or
feedback is one useful approach in persuasive technology [25, 311, 180]. Previous studies
have suggested that context awareness is important for effectiveness [247] and variation
in the intervention content is no less essential for its continued effectiveness [156]. In this
chapter, I would like to show that we can provide more context-aware, variational content
by using ML, while these approaches did not employ ML technologies.

Still, preparing a tailored ML model for this purpose is troublesome due to the reasons
presented in Section 2.3. Therefore, based on Strategy #1 in Section 3.2, I explored the
way to apply off-the-shelf models by taking human cognitive processes into consideration.
Here, the elaboration likelihood model (ELM) [230] was specifically leveraged. ELM posits
that, for a persuasive message to lead to behavioral change, two key elements must be
present: motivation and ability. This means that, if a user is highly motivated and has
the ability to process the message, it can lead to behavioral change. Conversely, if the
motivation is low or the ability to process is insufficient, behavioral change is unlikely
to occur. Fogg [82] elevated this concept within the context of persuasive computing,
proposing a model where an appropriate prompt from computers at the right moment is
also a crucial requirement. It implies that, even with an off-the-shelf ML model that is not
tailored specifically for behavioral changes regarding task engagement, interactive systems
can contribute to engaging in intellectual tasks if we can present prompts that enhance
motivation and ability using the model.

Based on this idea, I present a novel interaction design, CatAlyst, that harnesses a
large generative model that is shared as an off-the-shelf ML model. This aims to lower the
cognitive load necessary to resume working on intellectual tasks, as catalysts in chemistry,
via prompting workers under the assumption that the lowered cognitive load leads to eliciting
their motivation and instilling a sense of capability in resuming the tasks. Specifically,
CatAlyst first detects when workers’ progress is halted and then intervenes with them by
presenting the continuation of their work, which is generated by off-the-shelf generative
models. Here, it might be tempting to think that using large generative models to automate
intellectual tasks could directly address the root cause of user needs. However, the efficiency
and subsequent workers’ satisfaction with such automation approaches depend on the
accuracy and fidelity of the ML models. For instance, trust may not be built between ML-
based systems and workers because of poor outputs that conflict with workers’ intentions
or do not meet their expectations [70, 144, 359, 9], resulting in ignorance of the systems.
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For example, Yang et al. [352] proposed an ML-based system that supports the writing
of fictional stories through text generation. However, it was suggested that the output of
the model might irritate users due to its low accuracy, lack of usability, and insufficient
transparency. In addition, assuring accuracy for each of a variety of task domains by
customizing models is challenging, as explained in Section 2.3. On the other hand, CatAlyst
aims to retrieve workers’ interest and encourage them to resume the original task by lowering
the hurdle, not contributing directly to workers’ tasks with generated content. Since workers
recognize CatAlyst as an intervention to encourage their work rather than proactively using
ML technologies with high expectations, they would not feel as irritated as systems like the
above one [352] even when generative models perform poorly.

To test the effectiveness of this interaction design, a series of evaluations was conducted.
First, a prototype running on a Web page was developed to support writing tasks by
generating a continuation of sentences in progress using GPT-3 [35], and its effectiveness
was confirmed by conducting a user study with 12 participants. Second, to examine how
CatAlyst can be used in an unconstrained situation for a longer period, another user study
was conducted, in which ten participants used the prototype for five days. Here, the purpose
of the participants to use the prototype was varied, such as keeping a diary, writing a
novel as their hobby, and writing media articles as their job. Finally, to demonstrate the
extensibility of CatAlyst in different tasks, a second prototype was developed in the form
of a Chrome extension that supports slide-editing tasks by generating the continuation of
slides in progress using GPT-3 [35] and a diffusion model [250]. These studies showed that,
under the condition that off-the-shelf generative models have a certain degree of generality
but not optimal accuracy, it is possible to support workers in multiple tasks by lowering the
hurdle for resumption. In other words, this is another example that the interaction design
informed by the strategies in Section 3.2 effectively addressed the user need by leveraging
an off-the-shelf ML model.

5.1 Related work

To situate the presented interaction design, I first review the research trend of leveraging
generative models to improve worker productivity while performing tasks, which leads to the
discussion about why supporting workers’ task engagement is specifically important. Also,
factors affecting workers’ task engagement were discussed based on existing HCI studies to
illustrate the novelty and challenges of utilizing generative models for this purpose.

5.1.1 Generative models for improving task efficiency

As many tasks have been digitized, there is a strong need for computational support to
improve the efficiency of such tasks, producing many software systems designed for various
tasks, such as Microsoft Office 365, Adobe Creative Cloud, etc. Such systems have now
started to incorporate ML technologies to add machine intelligence to accelerate workers’
task performance. For example, Gmail [49] can automatically generate response candidates
as well as complete sentences. GitHub Co-Pilot [375] can generate programming code based
on the natural language description of the functionality provided by users. These products
demonstrate the enormous potential of leveraging ML technologies to directly contribute to
and replace parts of human tasks, significantly improving workers’ task efficiency.
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More features and interactions have been proposed at the research level using ML-
based generation models. One of the most prominent examples is writing support systems
that leverage large language models [35]. There are a number of concurrent studies that
demonstrate how human writers and ML-based generation models can collaborate to
support writers [166, 260, 63], such as in creative writing [248, 265, 352, 362, 275]. For
example, Dang et al. [63] proposed a writing support tool that provides paragraph-wise
summaries as self-annotations while workers write the content. They found that the
generated summaries gave the workers an external perspective on their writing and helped
to polish the content. A series of ML models have also been developed for tasks other than
writing, such as slide-editing [263, 169, 371], music creation [182, 287], and drawing [173,
150, 368, 367]. For example, Sefid et al. [263] proposed an ML-based slide generation method
from PDF files for scientific papers, whereas Zheng et al. [371] proposed an approach of
converting programming notebooks into slides and showed that it improved the efficiency
of a slide-editing task.

While these studies show promising results of employing ML-based generation models
to improve task efficiency, there are two gaps: the wall of accuracy and the dependency
on workers’ engagement levels. First, insufficient accuracy and fidelity in the output of
ML-based systems can devastate trust in the systems, leading to ignorance of them. Yang et
al. [352] reported that poor quality in generated texts could irritate fiction writers. Kim et
al. [150] found that poor quality of output from AI does not provide rich inspiration for
workers. It would be ideal to customize ML models for each worker so that they can achieve
sufficient accuracy in individual tasks [278], but this is not necessarily feasible, especially
because of the huge cost of training and maintaining large models, as discussed in Section 2.3.
Furthermore, Yang et al. [356] pointed out the existence of inherent uncertainty surrounding
their capabilities and output complexity, making it difficult to construct trustful systems,
even with such customized models. Given these inherent concerns, it is no less important to
study generalizable approaches as to how off-the-shelf ML models can contribute to workers
performing various tasks without individual model tuning.

Second, the above studies implicitly assumed situations where workers are amenable to
using the systems and continue working on tasks, which might not always hold in actual
cases. In fact, as described in the next section, workers frequently struggle to maintain
focus while performing tasks for various reasons, including the required high cognitive load
and multitasking. According to ELM [230], when not only their attention is away from
the task but also their motivation is low, workers might not fully benefit from the systems
even if they feature more useful functions. This point requires an alternative approach
that targets workers who may not be fully immersed in their task, in contrast to previous
studies that aim to improve the productivity of workers who already engage in the task.

5.1.2 Needs for supporting workers’ task engagement

Here, the need to support workers’ task engagement is emphasized by the fact that modern
knowledge workers need to concentrate on a task for a long time, such as writing, coding,
and slide-editing. Particularly, it is difficult to maintain concentration for a long time
because these tasks cause mental fatigue, as human concentration is known to break after
30–45 minutes when performing these tasks [188, 225]. It is natural for people to become
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distracted, and this tendency is even higher in remote work scenarios [314], which have
increased significantly in these years owing to COVID-19 [228]. Furthermore, since such
tasks require a high cognitive load, workers often experience difficulty, particularly when
starting tasks or resuming after interruption. For example, Mark et al. [192] revealed that
it could take 25 minutes to return to a task on average once distracted from the task.

This further leads to procrastination [163, 83], which is known to be a major problem
for office workers today, as it can lead to stress and problems in relationships, work, and
health, such as depression [257, 22, 52]. However, it is known that the causes of the high
hurdle to starting work are complex [319]. One of the major causes is perfectionism among
workers, leading to their assumption that tasks must be completed flawlessly. They often
stop thinking before starting tasks because they consider too much about the expected
workload and sometimes feel fear of failure [261]. In response, practitioners often emphasize
the importance of starting tasks anyway, for instance, for 3–5 minutes before deeply thinking
about the workload [239], as one of the best ways to engage in the tasks. The Pomodoro
technique [55] is a strategy to divide the entire task into small segments so that workers can
start working on one of them with a lowered hurdle. The presented interaction design is
informed by such practices based on human cognitive processes, as it uses off-the-shelf ML
models to guide workers to take the first step to start working when they are not immersed
in the task, as described in Section 5.2.2.

5.1.3 Interventions for supporting worker’s task engagement

Meanwhile, there are several approaches proposed to support workers’ task engagement
through interventions when they are distracted. Site blockers are a typical example of
explicit intervention since they force users to return to their intended task by blocking
access to specific entertainment Websites. However, this is a primitive and static approach
that increases the psychological burden on the user owing to its coercive power [156],
resulting in workers uninstalling the systems. Nudge has also been extensively studied [189,
180, 311, 247, 26, 25] to induce behavioral changes. For example, encouraging messages
have been popularly employed to motivate students [25] or induce exercise behavior [311].
Furthermore, Liu et al. [180] proposed a method to motivate workers to return to the task
of editing ill-formatted documents by designing feedback reflecting their progress based on
the perspective of persuasive technology. Their user study showed a significantly shorter
average off-task time by adding visually encouraging feedback that reflected their progress.
Similarly, Rodriguez et al. [247] suggested presenting context-aware content as a factor for
successful nudge design, as it improves personal relevance and motivation. Even though
such nudging approaches can also be effective in our case, the inherent nature of nudging
would not always be suitable in the context of procrastination on intellectually demanding
tasks. This is because nudge has emphasized the importance of providing all available
choices to people, without forbidding any of them [297], from the perspective of libertarian
paternalism. Meanwhile, people who procrastinate intentionally choose to do so while
recognizing the necessity of completing the tasks [163, 83]. Given this, the effectiveness of
such nudge-based approaches is uncertain for our situation, where the target tasks may
require higher effort and focus than those in prior studies, such as editing ill-formatted
documents.
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Here, the presented interaction design of providing the continuation of interrupted work
to lower the hurdle for resuming a task can regarded as a sophisticated version of these
nudge-based approaches. This leverages off-the-shelf generative models for this purpose
since concurrent large generative models are adept at producing context-aware content,
although they are sometimes unable to satisfy workers who expect the generated content to
replace parts of their tasks directly [352, 150]. This point allows us to anticipate that such
generated content could be used to support workers’ task engagement by drawing their
diverted attention and offering a base to work on, considering human cognitive processes
such as ELM [230] and Fogg’s model [82]. More specifically, we can expect that workers can
resume the interrupted task with less effort if they find the generated content supporting
their ideation or providing relevant information. I believe that this is another illustrative
example showing how the consideration of cognitive processes enables a new application of
off-the-shelf ML models.

5.2 CatAlyst

This section describes how CatAlyst intervenes with workers using the generated contin-
uation of interrupted work. Also, the strategy behind this idea is elaborated from the
perspective of human cognitive processes and persuasive technology.

5.2.1 Architecture

Figure 15 shows an overview of the presented interaction design for intervening with workers
to enhance task engagement. CatAlyst first detects the moments where the progress of the
workers’ tasks is stopped based on the interaction log (A). It then generates content that is
likely to follow interrupted work using an off-the-shelf generative model (B). For example,
GPT-3 [35] can be used in writing tasks to predict what would come next. Finally, it sends
notifications to the workers while showing part of the generated content to induce them to
resume tasks (C). To expand the applicability, the pipeline is designed to be capable of
using any large generative models as long as they can produce a context-aware continuation
of the interrupted task. As mentioned at the beginning of this chapter, two prototypes for
writing and slide-editing support were prepared based on this design. Both prototypes run
as Web applications.

(B) Generate continuation of interrupted work (A) Detect interruption

Doing task Distracted from task Large generative models

(C) Prompt workers

Figure 15: Overview of CatAlyst. (A) Detecting interruption based on workers’ progress. (B)
Generating continuation of interrupted work using off-the-shelf generative models. (C) Prompting
workers to resume the task via notification.

For detecting a break in workers’ concentration, previous research has explored several
approaches, including image-based sensing using a webcam [11], and estimation from
interaction log [180]. The prepared implementations adopted the estimation method
using interaction logs to avoid the additional cost and risk of using sensors (e.g., privacy).
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Specifically, the prototypes send the interaction logs to a server and find a moment when
the workers have not made any interaction for T s. The initial value of T was determined
in a pilot study as the approximate time that distinguishes the actual distraction of the
workers from the random interval during an engagement, which was 45 s. I was aware that,
even if workers do not make any interaction over T s, they might engage in tasks, such as
long contemplation, resulting in false-positive detection. Simultaneously, it was presumed
that intervening with them in such moments using the generated continuation would not
work negatively, as it could provide them with new perspectives or information that could
facilitate their contemplation. This idea of designing an intervention that might work (or at
least does not cause negative experiences) even when triggered by false-positive detection
was common to Mindless Attractor, which was presented in Chapter 4. Note that we can
make the value T controllable to provide them with global control of ML-based systems for
a better human-AI relationship [6].

For generating the continuation of the interrupted work, CatAlyst uses off-the-shelf
generative models, such as GPT-3 [35]. In the writing task, for instance, the text in progress
was provided for a model to predict the text to follow. The same scheme can be applied to
the slide-editing task, in which all text fragments and image captions are extracted from
the slides in progress and provided for a model (Figure 16). Subsequently, the continuation
prediction from the model is used to fill the new slide that is automatically appended. Here,
CatAlyst can be applied to other domains by alternating the off-the-shelf model to be used
with, for example, those for music creation [182, 287] and drawing [173, 150, 368, 367].
Furthermore, the slide-editing task illustrates how this interaction design of harnessing
off-the-shelf generative models can be extensively applied to new tasks by formulating
appropriate inputs (i.e., prompt programming [244]) even if those tasks have not been
considered at the time of training.

The prototypes notify workers using a Notification API of the browsers once the
continuation is generated. It aimed to draw not only workers’ attention but also their
interest, as discussed later in Section 5.2.2. Therefore, the notification was designed
to present the beginning of the generated continuations (e.g., the first sentence of the
generated text or the title of the generated slide). Note that CatAlyst can be extended to
send notifications in other forms, such as using a smartphone to stimulate workers whose
interest is deprived by smartphone apps.

5.2.2 Design consideration

Resuming an intellectual task while a worker gets distracted is expected to require more
cognitive load than in cases where a nudge intervention is successful. In these situations, it
is expected that encouraging feedback, as in conventional methods [180, 311], has room for
improvement to provide more persuasive interventions and that prompting workers along
with a continuation would be more effective. By doing so, CatAlyst encourages workers
to start thinking about the task regardless of their status, even for a short time, which is
known as a popular practice to engage in the task [239]. This idea was originally inspired
by a practitioner’s insight, which has been popularly adopted by readers. James Clear [56]
proposed a strategy for behavioral change by employing an analogy of activation energy
in chemistry. He explained that every habit has activation energy that is required to get
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Brainstorm the continuation content of a presentation:
=====
Title: What is Climate Change?
Body:
A gradual increase in global temperatures.
Natural phenomena and various human activities
contribute to the increase in global average temperatures.
This is mainly due to an increase in
"greenhouse gases" such as carbon dioxide (CO2)

Image: Photo of a forest on fire
=====
Title: Greenhouse Gases
Body:
......

Title: Causes of Climate Change
Body:
The process of the Earth’s atmosphere and oceans
changing over the last century is called Climate Change.
This is mainly caused by the e�ects of human activities,
which include:
 * land use
 * forests and vegetation
 * land-use changes
 * water resources
 * energy consumption. and other natural phenomena
 These are all directly or indirectly related to the
e�ect of humans on the Earth's climate.
 Image: Burning of wood for firewood

GPT-3 Di�usion
model

Place texts
using API

Extract texts and captions using API

Slide in progress

Input text Output text

Generated slide

Figure 16: Actual example of how CatAlyst can generate the continuation in the slide-editing task
using GPT-3.

started, and thus, it is important to introduce a catalyst to lower the activation energy.
He further suggested utilizing intermediate steps with lower activation energy to induce
behavioral changes step by step. Similarly, the presented interaction design of achieving
such a catalyst-like effect using the generated continuation of interrupted work as the
intervention can be broken down in detail, as shown in Figure 17.

Receive notification Get interested in task Resume taskDistracted from task

ignore notification procrastinate task

Figure 17: Interventions lead to workers’ task resumption through multiple steps. At each step,
there is a chance for an intervention to fail to induce workers’ behavioral change.

Firstly, it is important that workers become interested in interventions and do not
ignore them. Regarding this point, interventions via notification can at least draw workers’
attention but do not always draw their interest. This means that it is easy to anticipate
that workers will ignore them if the content of the intervention is not very useful [285]
or attractive, as we often ignore push notifications on smartphones (the first failure case
in Figure 17). Here, Kovacs et al. [156] showed that adding variety to intervention is
effective in maintaining novelty. According to Berlyne [24], inducing curiosity is important
to drive motivation. Wickens [330] emphasizes the importance of inherent interest based
on a computational model on top of cognitive science. Given that, CatAlyst attempts to
make workers interested in the content of the intervention by presenting the generated
continuation of their interrupted work, which is more context-aware information, leading to
the inherent interests of workers.

The second part of the intervention flow (Figure 17) is to induce workers’ behavior of
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resuming the task after they retrieve their interest in the original task. More specifically,
CatAlyst aims to prompt them to resume the task quickly for 3–5 minutes to avoid
procrastination and engage in it. As mentioned at the beginning of this chapter, according
to ELM [230] and Fogg’s revised model [82], behavioral changes are achieved when the
elements of motivation, ability, and prompts are aligned. Regarding motivation, if workers
perceive CatAlyst as a collaborator, they will gain motivation to utilize the generated
content, as demonstrated in prior studies on human-AI collaboration [368, 367]. Regarding
ability, the generated continuation of the interrupted work can be a help, for example,
by supporting their ideation or providing reference information, as in prior studies about
human-AI co-creation reviewed in Section 5.1.1. Therefore, it can be expected that this
interaction design guides workers to resume the original task with enhanced motivation
and ability, preventing procrastination.

5.2.3 Hypothesis

The design consideration of CatAlyst, as discussed thus far, poses the following hypotheses.
First, it should be examined whether workers can recover their interest by being presented
with the generated content as an intervention, as this is the first step toward resumption
(see Figure 17).

H1: CatAlyst is an effective means to keep attracting the interest of workers
who are away from the task by presenting the continuation of interrupted work
as an intervention.

Next, even if the workers’ interest returns to the task by seeing the generated continua-
tion, they might not resume the task and go back to the distracted states (i.e., procrasti-
nation), given the required hurdle for working on the task. Therefore, it requires further
investigation into whether the workers prompted by the intervention change their behavior
(i.e., resume the task), guiding us to posit the following hypothesis.

H2: CatAlyst can induce workers’ behavior to resume the original task effectively
through the intervention.

If these hypotheses are supported, the effectiveness of CatAlyst in helping workers’
task engagement will be validated. It is further anticipated that the overall productivity
of workers would be enhanced with the intervention, leading to the following hypothesis.
If this hypothesis is supported, CatAlyst can be used as an alternative approach to the
previous studies to improve task efficiency.

H3: CatAlyst can improve worker productivity by helping them avoid procras-
tination while performing tasks.

Finally, we can expect that CatAlyst can contribute to improving the subjective
experience of workers who often face a high cognitive load during tasks. If this hypothesis
holds true along with the above hypotheses, we can conclude that the design of CatAlyst
functioned as intended. Therefore, this point leads to examining whether CatAlyst actually
lowers the hurdle for workers to resume tasks and offers a favorable experience.

H4: CatAlyst can lower the cognitive load imposed on workers while performing
a task, thereby being favorably accepted by them.
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5.3 Study 1: Writing Task

To test these hypotheses, I first conducted a user study in a controlled setting in which
the prototype of CatAlyst for supporting workers’ writing was used. This is because, while
writing is one of the tasks that knowledge workers regularly perform, it requires a high level
of skills and cognitive load, and workers often lose focus while performing it [198].

5.3.1 Design

A within-participant study was conducted to compare three conditions: proposed, control,
and none. Participants experienced interventions from the prototype of CatAlyst in the
proposed condition. In the control condition, they instead experienced a conventional inter-
vention for supporting task engagement, that is, encouraging messages (see Section 5.1.3).
In the none condition, they did not experience any intervention and only performed the
writing task as usual.

5.3.2 Task

In this study, participants were asked to write essays of approximately 1,200 characters in
Japanese. Six essay tasks were prepared based on publicized university exams to balance
their difficulty, such as: “There are more people who eat alone these days. What do you
think about this trend from the perspective of modern social structure?” Three were
randomly chosen for each participant and assigned to the three conditions. It took roughly
30 min to write one essay.

5.3.3 Implementation

For this user study, three types of Web pages were prepared corresponding to the three
conditions. As shown in Figure 18, they had a center box in which the participants wrote
texts. In the proposed and control conditions, the Web pages recorded the interaction
log of the participants and detected the moment they got distracted. In the proposed
condition, the written text in progress was sent to a remote server, where its continuation
was generated using the off-the-shelf GPT-3 model [35] that was pretrained with the C4 [240]
and CC100 [58] datasets.4 The Web page prompted the participants with a notification
displaying its first sentence once the continuation was generated. In the control condition,
the Web page did not send the text and immediately showed a notification displaying an
encouraging message that was randomly chosen from the six patterns prepared based on a
public site blocker.5

5.3.4 Procedure

The participant recruitment was conducted by publishing a Web page and, to secure the
number of participants, posting a link to the page on social media. As a result, twelve
participants (six males and six females, 24–59 years old) participated in the study. Each
two of them were assigned to one of the six possible orders of the three conditions. The

4https://huggingface.co/rinna/japanese-gpt-1b
5https://chrome.google.com/webstore/detail/blocksite-block-websites/

eiimnmioipafcokbfikbljfdeojpcgbh
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Notification showing the first part
of the generated continuation

(b) The continuation of their work was generated and notification was sent.

Textbox showing
the generated continuation

(c) They were able to refer to the generated continuation in the proposed condition.

Instruction of
the writing task

Box to write
down the text

(a) The participants performed the tasks on this interface.

Figure 18: Interface used in Study 1.

participants agreed to the research policy and were provided with a brief explanation of
the usage of the Web pages in the beginning. Here, it was clarified that they would not be
penalized even if they spent a long time on the tasks so that they could perform the tasks
as usual. In addition, they were told that they were allowed to perform any habit they
might have in performing tasks, for example, listening to music, to induce spontaneous
behavior, following the procedure of Liu et al. [180]. They then performed three essay tasks
using the Web page that corresponded to the assigned order. Every time they completed a
task, they were asked to fill out a questionnaire to evaluate their experience of the task
using the Web page. They were also asked to fill out another questionnaire that requested
a comparison of the three conditions and additional comments after completing all the
assigned tasks. The study was conducted remotely for all participants.

5.3.5 Measure

Multiple measures were prepared to examine the hypotheses. From the participants’
behavior during the use of Web pages, four measures were calculated: interest retrieval time,
ignorance rate, progress after resumption, and total writing time. From the questionnaire
responses, cognitive load and system usability were evaluated.

Interest retrieval time In correspondence with H1, interest retrieval time was
calculated, which denotes the time each participant spent from the moment they received a
notification to the moment they recovered their interest in the task. Here, the recovery of
interest was caught by finding the moment when they made any operations on the Web
page (e.g., moving a mouse or pressing a key) for the first time after receiving a notification.
Then, the values of the proposed and control conditions were compared because the none
condition did not present any notifications. Thus, when the interest retrieval time of the
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proposed condition was shorter than that of the control condition, H1 is supported.

Ignorance rate Also, ignorance rate was calculated, which denotes a rate of interven-
tions (i.e., notifications) that were ignored by the participants. The ignorance rate would
be highly correlated with the interest retrieval time (i.e., a longer interest retrieval time
leads to a higher ignorance rate) because the proposed and control conditions prompted a
notification every T s until the participants made any operations. Still, this measure was
prepared to evaluate H1 precisely. Specifically, as discussed in Section 5.1.1, there was a risk
of losing the trust of the participants due to a mismatch with their expectations, fostering
ignorance of the notification. Therefore, to confirm that CatAlyst can keep attracting their
interest, how the ignorance rate changed as the number of interventions each participant
received increased was examined. If the ignorance rate of the proposed condition was lower
than that of the control condition and exhibited stable values with respect to the increase
in the number of interventions, H1 is further supported.

Progress after resumption In correspondence with H2, I quantified and compared the
number of characters the participants typed within a specific period after the participants
recovered their interest in the task, namely, progress after resumption. As discussed in
Section 5.2.2, they might procrastinate on the task even though they have recovered their
interest. In such cases, progress after resumption would remain insignificant. Conversely,
H2 is supported if the increase in the number of characters after resumption in the proposed
condition was more significant than that in the control condition.

Total writing time The productivity of the participants was evaluated via two
measures. The first is the total writing time they spent on the tasks. The average of the
total writing time would be equivalent if CatAlyst did not contribute to the improvement of
worker productivity since the difficulty and assignments of the tasks prepared were balanced.
In other words, H3 is not supported unless the total writing time of the proposed condition
was shorter than that of the other two conditions.

Subjective quality The subjective quality of the texts the participants wrote was also
evaluated. This was to ensure that the reduction in the total writing time was enabled not
by sacrificing the text quality, but by the improvement in their productivity. Therefore,
three volunteer raters who had not participated in the study were invited to this study
to rate the texts in a manner agnostic to the experimental conditions. Each text was
evaluated for three aspects using a 7-point Likert scale: consistency, readability, and overall
quality. Therefore, H3 is supported when the proposed condition shortened the total writing
time while the raters’ evaluation for the texts written in this condition, at least, did not
deteriorate compared to the other two conditions.

Cognitive load This study also used a questionnaire to examine H4. Specifically, the
six items of the NASA-TLX [107] were used to calculate the raw TLX score [37]. This
allowed us to examine cognitive load across six factors: mental demand, physical demand,
temporal demand, performance, effort, and frustration. As higher scores indicate higher
cognitive load, H4 is supported when the scores of the proposed condition were lower than
those of the other conditions.

System usability Furthermore, system usability was examined to complement the
cognitive load in terms of evaluating the subjective experience of the participants. Here, ten
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items from the System Usability Scale (SUS) [34] were adopted to compare their usability
evaluation for the proposed and control conditions. The case in which the score of the
proposed condition was higher than that of the other conditions corroborates H4 because it
implies better usability of CatAlyst. Moreover, the participants were asked to rank the three
conditions in order of their evaluation of system usability in the questionnaire they completed
at the end of the study. Their responses were compared across the three conditions to
confirm that the proposed condition was ranked higher than the other conditions, which
leads to supporting H4.

5.3.6 Results

This study provided the following results:

Interest retrieval time Firstly, the interest retrieval time is presented in Table 5.
The participants in the proposed condition reacted to the intervention within a much
shorter period than those in the control condition. Welch’s t-test after Levene’s test
confirmed that the mean of the values in the proposed condition was significantly shorter
(t(72.31) = 3.20, p = 0.002) than that in the control condition, supporting H1. Furthermore,
the control condition exhibited a greater variance in the interest retrieval time. In fact,
cases where the encouraging message did not work were observed for some completely
distracted participants, whose interests were recovered after more than 10 min, conforming
to previous research [192].

Ignorance rate Moreover, H1 was corroborated by a comparison of ignorance rates.
Corresponding to the longer interest retrieval time in the control condition, it presented a
much larger number of notifications until the participants recovered their interest in the task,
most of which were ignored, as shown in Table 6 (A). The ignorance rate of the proposed
condition was significantly lower (p < 0.001) than that of the control condition, according
to Fisher’s exact test. Interestingly, no difference was found between the two conditions
when only the first intervention presented to each participant was considered (p = 0.260).
In other words, the intervention of the control condition attracted the participants’ interest
at the beginning, but they became less persuaded by the encouraging messages as they saw
more encouraging messages, leading to an increase in the ignorance rate. Conversely, this
suggests that CatAlyst can keep attracting the interest of workers, which aligns with the
intention of introducing personalized, context-aware, and variational intervention.

In addition, this result can be explained by perceived utility, which Ling et al. [174]
mentioned as a factor in maintaining the use of ML-based systems. The workers will keep
interested in the intervention if they feel usefulness in the generated content (e.g., as support
for ideation), whereas conventional encouraging interventions do not have such utility. I
later discuss this point based on the system usability and comments of the participants.

Progress after resumption The progress after resumption was then examined, as
presented in Table 7. It was found that the participants in the proposed condition made
more progress within T s after their interest returned to the task than those in the control

6Total number of the notifications presented to the participants as the first intervention in the control
condition exceeds the number of participants because some of them did not recover their interest until
several notifications were prompted even in the first intervention.
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Table 5: Comparison of the in-
terest retrieval time between the
proposed and control conditions,
which were significantly different
(p = 0.002).

Mean SD

Control 135.0 ± 303.7 (s)
Proposed 18.8 ± 25.1 (s)

Table 6: Comparison of the ignorance rate between the proposed
and control conditions. While the rate was significantly lower
for the proposed condition (p < 0.001), no difference was
observed when only the first intervention presented to each
participant was considered (p = 0.260).6

(A) All (B) First time

Ignored Worked Ignored Worked

Control 185 71 4 11
Proposed 5 29 0 8

Table 7: Comparison of the progress after re-
sumption time between the proposed and con-
trol conditions, which were significantly different
(p = 0.041).

Mean SD

Control 17.7 ± 36.3 (chars)
Proposed 63.5 ± 186.2 (chars)

Table 8: Comparison of the total writing time
between the three conditions, which were not
significantly different (p = 0.174).

Mean SD

Control 2557.3 ± 2196.5 (s)
Proposed 1747.3 ± 1660.0 (s)
None 2231.2 ± 1359.8 (s)

condition, according to the t-test (t(98) = 2.08, p = 0.041). This supported H2, while
implying two possibilities regarding the participants’ behavior: 1) participants in the
proposed condition could utilize the generated content to come up with what to write next,
and 2) participants in the control condition procrastinated the task even after being guided
to perform some operation on the Web page by encouraging messages.

Total writing time As shown in Table 8, no significant difference was found in the
total time the participants spent between the three conditions, according to the Friedman
test after Levene’s test. Thus, H3 was not supported. However, we can see that the
participants in the proposed condition spent less time on average than those in the other
conditions, which implies the effect of CatAlyst. Simultaneously, the average time spent
in the control condition was slightly longer than that in the none condition. This can
be attributed to the fact that, while the previous work in Section 5.1.3 employed a clear
criterion for detecting interruptions, such as being presented with explicit interruption
cues by an experimenter [180], time-based naïve criteria was used here to examine the
effectiveness of CatAlyst against false-positive detection.

Subjective quality Meanwhile, no significant difference was found in the raters’
subjective evaluation of the quality of the texts the participants wrote between the three
conditions, according to the Friedman test. Specifically, as shown in Table 9, all of the
three aspects the raters evaluated (i.e., consistency, readability, and overall quality) did
not exhibit a significant difference (p = 0.354, 0.221, and 0.972, respectively). This result
implied that CatAlyst did not deteriorate the quality of the texts the participants wrote,
while H3 was not supported.

Cognitive load To evaluate H4, the participants’ evaluations of their cognitive load
were examined, as shown in Figure 19. One-way repeated measures ANOVA suggested
significant differences in their cognitive load with respect to the frustration factor (F (2, 22) =
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Table 9: Comparison of the subjective quality of the texts
between the three conditions, which were not significantly
different regarding consistency, readability, and overall qual-
ity (p = 0.354, 0.221, and 0.972, respectively).

Consistency Readability Overall quality

Control 5.50 ± 1.21 5.25 ± 1.32 5.11 ± 1.37
Proposed 5.03 ± 1.61 5.17 ± 1.63 4.89 ± 1.65
None 5.47 ± 1.54 4.97 ± 1.46 5.06 ± 1.43

Table 10: Comparison of the par-
ticipants’ evaluations of the system
usability between the proposed and
control conditions, which were not
significantly different (p = 0.082).

Mean SD

Control 62.1 ± 22.8
Proposed 75.6 ± 13.7

9.37, p = 0.001). Then, it was observed that the frustration they felt during the proposed
condition was significantly lower than those of the control (t(11) = 3.36, p = 0.019) and
none (t(11) = 3.25, p = 0.019) conditions, according to the post-hoc test with Holm
correction. This result suggests the plausibility of H4.

Figure 19: Participants’ evaluations of their cognitive load in Study 1. The frustration they felt
in the proposed condition was significantly lower than those of the control (p = 0.019) and none
(p = 0.019) conditions.

System usability Finally, the participants’ evaluations of the system usability were
examined. As presented in Table 10, the scores obtained using SUS implied that the
participants preferred the proposed condition over the control condition, while their difference
was not significant according to the paired t-test (t(11) = 1.91, p = 0.082). At the same
time, the participants’ rankings regarding usability suggested that the three conditions made
a significant difference in their rank order, according to the Friedman test (χ2(2) = 8.91,
p = 0.012). Specifically, the post-hoc Nemenyi test [210] revealed that the proposed condition
was likely to be ranked significantly higher (i.e., regarded as having better usability) than
the none condition (p = 0.022). In particular, eight participants responded that the
proposed condition was the best. These results indicated that CatAlyst was favorably
accepted by participants, corroborating H4. This also implied that the proposed condition
contributed to the perceived utility of the participants, and thus, its effectiveness did not
deteriorate after repeated exposure, as mentioned above.

5.3.7 User Comments

From the comments the participants left, it was confirmed that CatAlyst functioned as
expected, as follows.
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Not only did the notification make me realize that I was distracted, but it also
helped me get back to the task as I wondered what the AI had written.

I often lost concentration and stopped working because I could not come up
with the next sentence, so it was easier to get back to work with being presented
with the AI’s text.

Furthermore, the comment suggested that the generated continuation helped their work by
providing ideas and relevant information.

I was very surprised the first time when the text from the AI was presented. It
actually fit the topic, and I was able to use that as a reference for my writing.

Although I did not find consistency or uniformity in the AI’s output, I found it
useful for imitating its writing style and obtaining ideas for paraphrasing.

The latter comment suggested that the participant positively perceived the use of CatAlyst
even though the performance of the off-the-shelf generative model was not completely
satisfactory. Importantly, such a gap in performance expectations can lead to devastating
trust, as discussed in Section 5.1.1. However, the presented interaction design reframes the
main goal of CatAlyst to guide participants’ interest instead of directly contributing to their
tasks. We can infer that this induced the participants’ tolerance of the AI’s performance
and the enhancement of their subjective usability.

The observations are further supported by examining their comments on the control
condition, as follows:

At first, it was a good trigger for recognizing that I was not concentrating. But,
when I received the notification from the system while I interrupted the task to
write a quick reply to an incoming message, I felt a little annoyed.

This comment not only emphasizes the importance of designing an intervention that also
works with false-positive detection but also suggests the reason why the intervention of the
control condition tended to be ignored as the number of interventions increased (Table 6).
Note that one participant requested that the frequency of the notification be controllable.
This conforms to the previous study that emphasized the importance of providing global
control in ML-based systems [6], and thus, it was reflected in the prototype in the following
long-term study.

5.4 Study 2: Writing Task in the Wild

Thus far, the effectiveness of the presented interaction design in the writing task has been
validated by confirming H1, H2, and H4 through the controlled user study. Still, the results
might be attributed to the fact that it might be the first time that the participants interacted
with the large generative models. In other words, it was desirable to conduct a long-term
study to deny the possibility that the effectiveness of CatAlyst depends on freshness.
Therefore, the effectiveness of CatAlyst was evaluated in a study with a longer duration
and participants having diverse motivations and purposes for writing. Ten participants
used the prototype for five days and provided their perspectives and feedback on the design
of CatAlyst.
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Table 11: Backgrounds of the participants in Study 2.

Gender Writing habit Main usage

P1 M 3 years Novel
P2 F 8 years Web article / Personal blog
P3 F 2 years Diary
P4 M 0.5 years Personal blog
P5 F 4 years Web article / Personal blog
P6 F rarely University report
P7 M 10 years Diary
P8 M 1 year Fantasy / Lyric writing
P9 M rarely Private letter

P10 M 6 years Novel

5.4.1 Implementation

The prototype used was basically not modified from Section 5.3, except that it was enabled
to adjust the time threshold T based on the feedback gained in the previous study, as it
would be helpful, particularly when the prototype is used in the wild. Furthermore, it was
expected that participants would leave the Web page for a substantial amount of time
because of other tasks in their daily lives (e.g., having lunch) in contrast to the controlled
setting in the first study. Thus, a feature of sending participants an email with generated
content 5 minutes after they left the Web page was added based on the expectation that
this feature would help participants resume the original task when they finish other tasks.
Note that the content written by participants was neither accessible to experimenters nor
stored on the server to preserve their privacy. It was only used for the inference by the
off-the-shelf GPT-3 model and immediately discarded afterward.

5.4.2 Procedure

In the same manner as in Study 1, ten participants (P1–P10) were recruited. Table 11
summarizes their backgrounds. They self-reported their writing experience regarding the
period they regularly had writing tasks. In this study, the participants first agreed to the
research policy and familiarized themselves with how to use the prototype. They were
instructed to use the prototype for writing freely during the study period whenever they
would like, without setting any quota. After a participant spent five days, they were asked
for their comments to understand how they perceived the use of CatAlyst in terms of its
usability and influence on their behavior. The participants were asked a series of questions:
“what kind of writing did you use the system for? ”, “can you tell us your overall impressions
of using the system? ”, “did you feel any change with and without the system? ”, “what is your
impression about the AI which generated content? ”, “what was this system like for you? ”,
“what would you like to see with this system in the future? ”, and “do you want to continue
using the system? ”. Note that the study was conducted remotely for all participants.

After the above procedure, the participants’ use of CatAlyst was also examined from the
interaction log. This aimed to confirm the long-term effectiveness of CatAlyst in a manner
disassociated from the possible effect of the freshness in interacting with large generative
models. Specifically, the interest retrieval time was calculated in the same manner as in
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Table 12: Comparison of the interest retrieval time over the five days of the participants’ use, which
were not significantly different (p = 0.791).

Day #1 #2 #3 #4 #5

# of detected interruptions 31 49 10 13 14
Average retrieval time 95.4 117.1 121.1 105.2 93.4
Standard deviation 81.9 91.4 102.7 95.4 89.6

the previous study to analyze its trend over the five days of their use.

5.4.3 Usage results

As presented in Table 12, no significant difference was found in the interest retrieval time
across the five days, according to one-way ANOVA after Levene’s test (F (4, 112) = 0.425,
p = 0.791). This suggested that the effectiveness of CatAlyst in guiding the participants’
interests did not disappear even after long exposure to it. Note that the higher values
in Table 12 compared to the first study (Table 5) are attributed to the difference in the
situations. Specifically, these values include the moments when the participants interrupted
their writing tasks for necessary reasons in their daily lives, while the participants in
Section 5.3 were asked to complete the assigned tasks as a part of the study.

In addition, Table 12 allows us to infer that the participants continued the use of
CatAlyst over the five days, whereas the occasions they used can be influenced by various
factors (e.g., weekdays or weekends) in the uncontrolled setting of this study. Note that,
since the content written by the participants was not stored, the progress they made cannot
be quantified. Therefore, I then analyzed their responses in the semi-structured interviews.

5.4.4 Interview Results

Overall, participants responded positively to the question, “can you tell us your overall
impressions of using the system? ”, and mentioned various benefits of the prototype. More-
over, eight (all participants except P7 and P10) showed their motivation for continued use
toward the question: “do you want to continue using the system? ” This result corroborated
the support of H4, that is, the use of CatAlyst offers a favorable experience, and workers
feel its usefulness. Moreover, four of them (P4, P5, P6, and P9) mentioned the novelty of
the outputs as a key reason for their willingness to use the prototype.

I’ve always been curious about what’s generated. They were interesting. The
excitement never stopped during the use and I’d not get bored. (P6)

These comments implied that the participants’ favorable responses in Section 5.3 are not
merely due to its freshness but thanks to the design of CatAlyst. Specifically, the variety
in the outputs of the generative models plays a key role in keeping attracting workers’
interest in the intervention, as discussed in Section 5.2.2. The implications obtained from
the responses to the other questions are summarized below.

Effects on behavior Seven participants (P2, P3, P4, P5, P6, P8, and P9) mentioned
a significant change in their behavior owing to the system as an answer to the question:
“did you feel any change with and without the system? ”
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The notifications helped me cut out the time I spent touching my smartphone.
I also sometimes started or proceeded to write sentences because I was curious
to see what kind of sentences the AI would generate. I found this to be effective
in the initial stages, when the writing was the heaviest. (P3)

The comments were parallel to those in the short study (Section 5.3.7) and demonstrated
how CatAlyst affects workers and prevents their task procrastination. In particular,
P3’s comment implied a catalyst-like effect by lowering the hurdle for resuming the task,
corroborating the effectiveness of the presented interaction design.

Feelings about the accuracy of the model Next, the participants responded
similarly to the question: “what is your impression about the AI which generated content? ”
More specifically, they pointed out the variance in the quality of the generated content.

For my creative writing, the tool provided me with a good stimulus and motiva-
tion to continue writing because it allowed me to choose plots and words that I
could not have reached on my own. However, I could not directly leverage it
well for articulating my thought, like in a diary. (P8)

I felt that AI has its strengths and weaknesses depending on the field of articles
I write. As for abstract writing for hobbies, such as travelogues, novels, diaries,
etc., the AI helped me think about how to phrase words and what to do next, and
it worked beyond my expectations. However, AI generation was not appropriate
when it requires a great deal of checking, like using it for my job [Web writing].
(P2)

I was trying to write a full-length novel game scenario, and there was a constraint
that each character setting was already fixed. While the outputs were interesting
and I had fun seeing them, I needed to manually edit them, such as wording in
generated utterances. (P10)

This result highlighted the difficulty of expecting an off-the-shelf generative model to
perform well in all domains without any tuning, as discussed in Section 5.1.1. However, it is
noteworthy that the participants affirmatively perceived their experiences of using CatAlyst
owing to its design of not aiming to directly replace part of their tasks in the first place.

Role of CatAlyst The participants’ responses shed light on the three different roles
of CatAlyst regarding the question: “what was this system like for you? ”

CatAlyst as a reminder Two participants (P2 and P9) appreciated the effective reminder
function:

I used the system for my job. Due to the working-from-home situation, I often
get distracted. I appreciate the reminding function as well as its generated
content, which lowers the hurdle for writing. (P2)

CatAlyst as an ideator The benefit of obtaining ideas from CatAlyst was also emphasized
by some participants (P1, P4, P8, and P10), who mostly performed creative writing, as
follows:

The suggested wording and story flow can be enough hints. For example, I got
inspired to include a monologue of the protagonist or conversation to improve
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the tempo of the story. I used them to accelerate my writing. (P1)

This benefit is aligned with previous works supporting writing with off-the-shelf genera-
tive models and confirms the validity of our expectation that CatAlyst can induce task
resumption in workers by improving their ability to perform the task (Section 5.2.2).

CatAlyst as a peer Other participants (P2, P3, P5, and P6) perceived CatAlyst as a peer
or collaborator who motivated them:

I found it like a co-worker working with me. I became curious about what they
produce while I was taking a break. (P5)

It is easier to expand my thinking by reviewing AI’s outputs rather than
contemplating from scratch by myself. In that sense, the AI was a peer to whom
I can talk. (P3)

Their responses corresponded to our expectation that CatAlyst can gain workers’ interest
by stimulating their curiosity and can induce their task resumption by increasing their
motivation (Section 5.2.2).

Room for further improvement of CatAlyst The participants also mentioned
their requests for the system when answering the question: “what would you like to see
with this system in the future? ” Some participants (P1, P4, and P7) mentioned the need to
control notification timing as follows:

Ideally, I want to turn off the notification when I’m deeply thinking about the
story flow, even if I’m not typing any words. (P1)

This point can also be mitigated by improving the detection mechanism of the moments
to intervene in, considering that the current approach in the prototype is a practical but
naïve method.

I hope the system cooperates with a smartwatch because I think it would be
useful to receive notifications when I am walking or something like that, so I
can think about it. (P4)

This comment implied a potential need for workers to actively set an intervention timing
for CatAlyst as a reminder while performing different tasks (e.g., walking). Moreover, there
is an interesting conflict in the comments.

I could not wait for the AI’s generation. It would have been even better if there
had been a button for actively using it or more suggestions from the system.
(P7)

I like its current design. If there had been an auto-generate button, it would
have been a bad experience if the output had been inaccurate. In the current
case, by thinking of it as an added feature of a reminder, my expectations were
relaxed and I was glad to see it for the fun of it. (P6)

While implementing such a button for actively using large generative models is feasible,
we need to acknowledge that workers’ trust in the system would be affected by how much
they expect in the system and how accurate the provided output is, as Yin et al. [359]
suggested. In this sense, placing a button for actively using models can lead to workers’
raised expectations, as they would rely on the feature to boost their work, and thus,
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their trust could be degraded if the output quality is insufficient. This point emphasizes
the importance of finding an appropriate subproblem, as suggested by the strategies in
Section 3.2, rather than attempting to address all visible user needs, especially when using
off-the-shelf ML models.

Three participants (P1, P8, and P10) wanted to see multiple generations simultaneously.

I would appreciate it if it could suggest several patterns of sentences at the same
time so that I can do a lot of thinking when I receive the notification. (P1)

This demand can be explained by prior research suggesting that presenting multiple
perspectives, including AI’s suggestions, can foster one’s reflection by offering discussion
grounds [10]. Additionally, two participants (P6 and P10) requested CatAlyst implemented
in existing editors.

It’s interesting, but I’d prefer to keep using my current editor [Google Docs]
simply because it has more useful functions. If there is an API for integrating
this system into my editor, I’d appreciate it. (P10)

In fact, CatAlyst can be easily integrated into online editors, as the next study shows a
prototype in the form of a Chrome extension for supporting slide-editing on Google Slides.

5.5 Study 3: Slide-Editing Task

The short- and long-term studies in Sections 5.3 and 5.4 demonstrated the effectiveness of
CatAlyst in writing tasks. Another study was then conducted in which participants per-
formed slide-editing tasks with the support of CatAlyst to examine the domain extensibility
of the presented interaction design. I again evaluated the hypotheses in Section 5.2.3 in a
similar manner to Section 5.3 using a within-participant design with the proposed, control,
and none conditions.

5.5.1 Task

For this study, three tasks were prepared in which participants were asked to create a
slide of at least 15 pages about an aging society, online abuse, or global warming. Here, a
six-page draft slide for each topic was prepared and provided to the participants to start
the corresponding task. This aimed to balance the difficulty of the tasks because, without
the draft, the quality of the slides and the time required to edit them would largely depend
on each participant. It took roughly 30 minutes to complete a single task, and the three
tasks were randomly assigned to three conditions for each participant.

5.5.2 Implementation

In this study, participants were asked to use Google Slides7 to edit the slides after installing
a Chrome extension that I developed. The extension detects the moment when the
participants become distracted according to their interaction log, in the same manner as in
Section 5.3.3. In the proposed condition, the ID of the edited slide was sent to a remote
server where its continuation was generated by transforming the slide in progress into a
text input to the model. Here, the same GPT-3 model as Section 5.3.3 was used without

7https://www.google.com/slides/about
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Table 13: Comparison of the in-
terest retrieval time between the
proposed and control conditions,
which were significantly different
(p = 0.002).

Mean SD

Control 49.5 ± 81.8 (s)
Proposed 19.2 ± 44.0 (s)

Table 14: Comparison of the ignorance rate between the pro-
posed and control conditions. While the rate was significantly
lower for the proposed condition (p < 0.001), the difference
was not observed when only the first intervention presented to
each participant was considered (p = 0.712).

(A) All (B) First time

Ignored Worked Ignored Worked

Control 85 104 7 11
Proposed 19 70 4 11

performing any tuning for slide-editing. In addition, part of the model output was provided
to a diffusion model [250] to generate an image that complements the generated slide.
The slide was then appended to the original slide via the Google Slides API,8 and the
participants were prompted with a notification displaying the title of the generated slide.
In the control condition, the same six encouraging messages as in Section 5.3.3 were used
to show a notification displaying one of them at the time of distraction.

5.5.3 Procedure

This study followed the procedure of Study 1, involving twelve participants (eight males and
four females; 20–59 years old9). Similarly, each participant completed four questionnaires:
three at the end of each task and one at the end of all tasks. From their behavior during
slide-editing and their responses to the questionnaires, the same measures as in Section 5.3.5
were prepared, except for the modification of subjective evaluation and the removal of
progress after resumption. For the subjective evaluation, the raters were asked to evaluate
each slide with respect to consistency, visual appearance, and overall quality because
readability is not applicable to this task. The progress after resumption is omitted because,
at the interface of Google Slide, a precise edit history that allows us to quantify the progress
could not be obtained either by the extension or by the API. Therefore, considering that
H2 is supported in Section 5.3.6, H1, H3, and H4 were examined using the other measures.

5.5.4 Results

This study provided the following results:

Interest retrieval time Regarding H1, similar results as in Section 5.3.6 were obtained.
Specifically, the interest retrieval time was significantly shorter (t(165.05) = 3.16, p = 0.002)
for the proposed condition than for the control condition, as presented in Table 13.

Ignorance rate Moreover, as shown in Table 14, the ignorance rate was also signifi-
cantly lower (p < 0.001). It was also confirmed that, at the first intervention, the control
condition was considerably effective compared to the proposed condition, while repeated
exposure to encouraging messages degraded their effectiveness.

Total editing time For H3, a significant difference was observed in the time the
participants spent between the three conditions, according to the Friedman test after

8https://developers.google.com/slides/api
9Note that one participant preferred not to disclose their age.
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Table 15: Comparison of the subjective quality of the slides between the three conditions, which were
not significantly different regarding consistency, visual appearance, and overall quality (p = 0.311,
0.960, and 0.475, respectively).

Consistency Visual appearance Overall quality

Control 5.28 ± 1.09 5.00 ± 1.15 4.92 ± 1.16
Proposed 5.22 ± 1.02 5.03 ± 1.18 5.08 ± 1.11
None 5.42 ± 0.87 4.89 ± 1.28 5.00 ± 1.20

Table 16: Comparison of the total editing time be-
tween the three conditions. The time spent by the
participants in the proposed condition was significantly
shorter than that in the none condition (p = 0.038).

Mean SD

Control 1776.1 ± 960.4 (s)
Proposed 1356.5 ± 1048.7 (s)
None 2794.5 ± 2866.5 (s)

Table 17: Comparison of the participants’
evaluations of the system usability be-
tween the proposed and control condi-
tions, which were not significantly differ-
ent (p = 0.101).

Mean SD

Control 50.6 ± 19.4
Proposed 68.8 ± 20.1

Levene’s test (χ2(2) = 6.50, p = 0.039), as shown in Table 16. The post-hoc Nemenyi
test [210] was then conducted and revealed that the time spent in the proposed condition
was significantly shorter than that in the none condition (p = 0.038).

Subjective quality On the other hand, no significant difference was observed in the
raters’ evaluation of the quality of the slides the participants edited (Table 15), according
to the Friedman test (p = 0.311, 0.960, and 0.475 for consistency, visual appearance, and
overall quality, respectively). Thus, it was implied that the proposed condition reduced the
total time the participants spent while maintaining the quality of the edited slides. This
suggests that CatAlyst can contribute to improving worker productivity, supporting H3.

Cognitive load Their evaluations of the cognitive load were examined based on
the participants’ responses to the questionnaire. As illustrated in Figure 20, significant
differences were found in cognitive load in terms of temporal demand (F (2, 22) = 3.99,
p = 0.033), performance (F (2, 22) = 3.79, p = 0.038), effort (F (2, 22) = 8.63, p = 0.001),
and frustration (F (2, 22) = 7.80, p = 0.003) according to ANOVA. The post-hoc test with
Holm correction revealed that the scores of the effort and frustration factors in the proposed
condition were significantly lower than those in the control (t(11) = 3.60, p = 0.013 and
t(11) = 3.04, p = 0.033, respectively) and none (t(11) = 2.79, p = 0.035 and t(11) = 2.9,
p = 0.033, respectively) conditions.

These results implied the advantage of the presented interaction design. That is,
the design of guiding the participants’ interest using the generated continuation of the
interrupted work, which is context-aware and variational, would ease their frustration. This
would reduce the effort required to resume the task as well. Simultaneously, as mentioned in
Section 5.3.7 and also later in Section 5.5.5, the generated continuation sometimes supported
their progress by providing some ideas or reference information. This corroborated the
observation that CatAlyst contributes to participants’ perceived utility.

System usability The participants’ responses to items that measured system usability
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Figure 20: Participants’ evaluations of their cognitive load in Study 3. The effort they made and
the frustration they felt in the proposed condition was significantly lower than those of the control
(p = 0.013 and 0.033, respectively) and none (p = 0.035 and 0.033, respectively) conditions.

further supported this observation. As presented in Table 17, the participants provided
a higher SUS score for the proposed condition than for the control condition on average,
although their difference was insignificant (t(11) = 1.79, p = 0.101). Furthermore, the three
conditions exhibited a significant difference in the participants’ rankings regarding usability,
according to the Friedman test (χ2(2) = 7.09, p = 0.029). The proposed condition was
likely to be ranked significantly higher than the control condition (p = 0.038), as eight
participants regarded the proposed condition as the best. This result supported H4, and
together with the above results, we can conclude that the effectiveness and extensibility of
CatAlyst were confirmed.

5.5.5 User Comments

The comments of the participants highlighted the advantage of CatAlyst in drawing their
interest and lowering the hurdle for resumption in the slide-editing task as well.

I was surprised at the high quality of the automatically generated slides. I used
the presented images as is and the provided text with a little editing.

When I was notified with just a message, I was a little uncomfortable because I
felt like being monitored. Regarding the notification from the AI, I was able to
regard it as if the AI tried to give me an idea, so it was more satisfactory.

These comments are consistent with their evaluation of cognitive load. However, some
participants pointed out the limitation of the generated continuation, which might reflect
the fact that the model used was not specifically tuned for slide-editing.

As the quality of the AI’s output was not always perfect, the process of deleting
the automatically added slides or extracting useful parts from the slides and
merging them into my own slides was somewhat laborious and demanding.

Still, the participant commented that “it was very helpful that the AI provided content ideas,
which allowed me to focus consistently on the task without wondering.” In other words, it
was implied that off-the-shelf generative models that are not tuned for each individual task
and might be imperfect can still be useful in helping workers avoid procrastination.
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5.6 Limitations

Thus far, I have demonstrated the effectiveness and domain extensibility of CatAlyst by
verifying our hypotheses through two different tasks (writing and slide-editing). Specifically,
the results demonstrated CatAlyst can help workers avoid task procrastination with less
cognitive load through interventions made by off-the-shelf generative models. This adds an
answer to RQ1 in Section 3.4, as Strategy #1 in Section 3.2 can induce interaction design
that addresses the need of intellectual workers. Furthermore, the fact that its effectiveness
was confirmed through a series of user studies corroborates RQ2 affirmatively. At the same
time, the studies have several limitations. First, the quantitative results presented in this
chapter are limited to laboratory studies in both tasks, similar to prior work [180]. This
is due to the difficulty in recording the measures used in a study conducted in the wild
and making a fair comparison. For example, each worker would have tasks with different
difficulties and priorities (e.g., deadline, interruption, etc.). Therefore, in the in-the-wild
study (Section 5.4), our focus was on qualitatively confirming the usefulness of CatAlyst. It
is desirable to conduct a longitudinal study measuring the digital well-being of workers as
an outcome, as Howe and Menges did [123], and quantifying the effectiveness of CatAlyst
for future work.

The mechanism of detecting workers’ distractions can be further improved based on
participants’ feedback. The participants noticed that interventions sometimes occurred,
even when they focused on the task because the naïve method in the prototypes detected
the status of workers based on the interaction log. Such methods are unable to consider
moments when workers contemplate deeply (e.g., thinking about a plot when writing a
novel) without making any interactions on the Web page. If we could implement software
to be installed on their PCs, instead of a prototype Web page, it would be possible to
monitor more fine-grained activities, not just typing or not on a specific Web page. Such
information will help detect moments when workers are actually distracted with higher
precision [298, 347, 346], which would also contribute to quantifying the effectiveness of
CatAlyst by contextualizing the moment in the longitudinal in-the-wild study mentioned
above. Still, I want to emphasize that CatAlyst did not degrade workers’ experiences
compared to conventional encouraging messages through false-positive interventions. It
should also be noted that the use of large generative models poses a risk of bringing about
some bias and ethical considerations, as explained in Section 2.3. In particular, we should
acknowledge that stereotypes and negative propagation of particular social groups have
been observed in their outputs [267, 23, 53]. Consequently, in CatAlyst, we cannot deny the
possibility that such a bias is reflected in the final production of workers via the generated
continuation.

5.7 Summary

This chapter presented a novel interaction design, CatAlyst, for supporting intellectual
workers in their task engagement through an intervention that leverages off-the-shelf
generative models. This design is delivered by considering human cognitive processes that
have been discussed in ELM [230] and Fogg’s model [82] based on Strategy #1 presented in
Section 3.2. Specifically, CatAlyst generates a continuation of interrupted work to prompt
workers to resume the task by effectively attracting their interest and inducing behavioral
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change for task resumption. Note that this design is domain-extensible. Practitioners
can develop interactive systems on top of CatAlyst using off-the-shelf generative models
for another task domain, which would be a strong support to answer RQ1 of Section 3.4.
Furthermore, the effectiveness and usability of CatAlyst were confirmed through a series
of user studies, answering RQ2. At the same time, I acknowledge that the two examples
of Chapters 4 and 5 would not be enough to the applicability of the strategies against
open-ended user needs, and thus, I continued the exploration of other example cases in the
following chapters.
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6 Parametric transcription: An interaction design for en-
abling ultra-realistic style exploration in photo editing with
off-the-shelf style transfer models

This chapter considers the application of off-the-shelf ML models to support photo editing.
Particularly, we can expect that the application of GANs [95] can open up a new way of
photo editing, as it has enabled ultra-realistic style transfer [142]. For example, they can
be used to make a photo a user has taken (hereinafter referred to as an original photo)
look like a particular professional shot (hereinafter referred to as a reference photo). This
seems sufficient to address the user need to edit their own photos in a professional-like
manner. However, such end-to-end style transfer is, in fact, not optimal when we consider
the nature of our design processes. Our design processes are inherently exploratory—each
is an open-ended journey starting with an under-specified goal [293]. Through iterative
and nonlinear exploration, we refine our understanding of the space of possible designs
and establish the precise form of the final product in an opportunistic and serendipitous
manner [305, 296]. In other words, the intrinsic need of users is not just transferring the
style of a reference photo but doing it in a customizable and exploring manner. This
necessitates ML models for style transfer to serve a precise control such that each user can
easily understand. However, this would be difficult without preparing a tailored model by
overcoming the challenges of Section 2.3. Otherwise, the application of off-the-shelf models
can result in impeding the user’s understanding of possible design space and constraining
their possibilities in photo editing.

To overcome this situation, I focus on the human cognitive process regarding our mental
models in design processes, informed by Strategy #1 in Section 3.2. Particularly, I take note
of parametric design, whose power has been investigated in the context of computer-aided
design [30, 165]. In parametric design, all possible designs are controlled by a set of
parameters, and users can easily explore variations by tweaking them [157], which helps
users construct a mental model about the space of possible designs [165, 16]. Furthermore,
it can be expected that, once the mental model is constructed, users can efficiently yield
other variations and extend the understanding of the space, which is one of the keys to
pursuing creativity [91].

Based on these advantages, this dissertation presents a novel interaction design, para-
metric transcription of an end-to-end style transfer effect, which allows users to benefit
from off-the-shelf ML models for style transfer in the paradigm of parametric design. This
provides users with the best parameters to imitate the effect of the models, for example, by
showing a user how to set parameters (e.g., brightness, contrast, etc.) and which photo
filters to use for the original photo. Then, the user can obtain a photo that looks like
the “style-baked” image generated by transferring the style of the reference photo using
off-the-shelf models but is edited in a parametric manner. This allows the user to continue
further edits to explore its variations. Moreover, by using the parameters and filters of
an editing tool familiar to the user, such as Instagram, this interaction design can enable
users to explore variations easily using the mental model they already have. This means
that, by considering the nature of human design processes, we no longer need to expect the
off-the-shelf models to enable a customizable and explorable style transfer in a user-wise
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tailored manner, as long as they can find parameters that imitate style transfer effects.
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Figure 21: (a) Deep style transfer produces high-fidelity results but would be hard to utilize for
exploratory design as it is performed only in an end-to-end manner. (b) The presented interaction
design transcribes the style transfer effect into a set of parametric transformations available in a
tool the user is familiar with (e.g., Instagram), which encourages further exploration.

Still, it is not straightforward to find such parameters using off-the-shelf ML models.
In particular, it would be desirable not to rely only on a specific editing tool to effectively
support the exploratory processes of diverse users, considering that their familiar tools
can be varied. Therefore, in this chapter, I also present a computational framework
for achieving parametric transcription in a tool-agnostic manner (Figure 21). Its key
components are a perceptual metric retrieved from an off-the-shelf model and black-box
optimization. For the perceptual metric, this framework uses the latent representation
of content-invariant styles already acquired by the off-the-shelf style transfer model. By
minimizing the distance between the latent representations of the transformed result and
the reference sample, it finds the optimal parameters of the provided transformations
(e.g., brightness, contrast, etc.) for imitating the style transfer effect. This optimization
problem is not likely to be differentiable, but the adoption of black-box optimization [4]
makes it tractable. Furthermore, black-box optimization enables users to employ various
existing tools as sources of transformations.

To examine the feasibility of the presented interaction design, experiments in two
different scenarios were conducted using popular smartphone apps: transcribing photo style
transfer into Instagram and facial makeup transfer into SNOW. In both scenarios, subjective
evaluations confirmed its capability to produce results whose quality is comparable to those
produced by humans, showing its tool-agnostic applicability. Given that this interaction
design would not be enabled without the consideration of human cognitive processes
(i.e., design processes), this suggests the applicability of Strategy #1 presented in Section 3.2
to scenarios other than those associated with productivity support (Chapters 4 and 5),
which offers the answer to RQ1 of Section 3.4. Also, even though this chapter did not involve
a user study, the above discussion based on the human design processes corroborates that
the parameters obtained by the framework can support the creativity of users, addressing
RQ2.

6.1 Mechanism and limitations of style transfer techniques

To provide background information, this chapter first explains the mechanism of style transfer
techniques using GANs. Basically, cross-domain style transfer involves two networks: an
encoder to map input from one domain onto its latent representation and a generator to
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map the latent representation onto an output styled after another domain [178]. Formally,
assuming that X and Y are two domains with different styles and Z is a latent space,
an encoder EX :X →Z and a generator GX :Z →X are trained so that the transferred
result of an original input x∈X is obtained as y = GY(EX (x)), which is expected to hold
the style of Y. These networks are trained to preserve the cycle-consistency such that
x ≈ GX (EX (x)). Thus, the latent representation z ∈ Z is considered not to be specific to
either domain but to indicate style-invariant content information.

Some methods have achieved higher quality by disentangling the content and style
representations [164, 130]. For example, Lee et al. [164] prepared three latent spaces: Zc

for the content representation, and Zs
X and Zs

Y for the style representations of X and Y,
respectively. Using a content encoder Ec

X :X →Zc, a style encoder Es
Y :Y →Zs

Y , and a
generator GY :Zc×Zs

Y →Y, we can obtain the transferred result y = GY(E
c
X (x) , E

s
Y(ŷ))

that resembles the style of a specific reference sample ŷ ∈ Y . As described in Section 6.2.2,
the presented framework basically assumes the availability of the style encoder Es

Y for
defining a perceptual metric. Note that the presented framework does not use the generator
since provided parametric transformations take their role in it.

Though these methods succeeded in yielding high-fidelity results, when it comes to the
use of their off-the-shelf models for design support, they would not be sufficient in terms of
explorability. One possible approach to allow the exploration of the variations of the result
is blending the latent representation of multiple reference samples [336]. However, exploring
a blend parameter between latent representations until finding a satisfactory result can be
counterintuitive for users, especially considering the nonlinearity of the latent space [159].
For example, given two reference samples ŷ1, ŷ2 ∈ Y, the style of the transferred result
GY(E

c
X (x) , αEs

Y (ŷ1) + (1− α)Es
Y (ŷ2)) can be changed gradually between a ŷ1-like one

and a ŷ2-like one by tweaking their blending parameter α. However, it would not be easy
for a user to find the reference samples and the blending parameter that are able to produce
the desired result. In addition, while more than two reference samples may be needed to
ensure satisfactory variations, the more reference samples are used, the greater the number
of blending parameters required, which complicates the parameter exploration.

Another approach is modifying the architecture of GANs to allow users to specify
attributes in the style to be transferred [110, 102]. However, since these methods are
designed to explicitly learn the attribute information, this requires a tailored ML model
trained using a dataset annotated with regard to all attributes that can be transferred,
which poses the challenges of Section 2.3. Moreover, unlike the blending approach described
above, the user cannot control the degree of the transfer. Therefore, to leverage off-the-shelf
ML models for style transfer in exploratory design processes, I present a new interaction
design in a manner informed by the strategies explained in Section 3.2. Specifically, it
transcribes a transfer effect into parametric transformations available in a tool a user is
familiar with.

6.2 Parametric transcription

As explained at the beginning of this chapter, the presented interaction design is intended
to allow users to benefit from off-the-shelf ML models for style transfer in their exploratory
design processes. Before introducing the details of the computational framework to enable
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it, this section explains why its design of merging style transfer techniques with parametric
design is suitable for addressing the user needs.

6.2.1 Design rationale

Let us get back to the example of photo editing to understand the importance of explorability
in design processes. In this case, the user has two photos, i.e., original and reference photos,
and wants to exploratorily edit the original photo by using the reference photo as a loosely
specified initial goal. The user may first try to make some attributes in the style of the
original photo (e.g., brightness or contrast) look like those of the reference photo, but
then the user may want to change the attributes to modify or to change the degree of
the imitation randomly. Through iterations of such unstructured trials and errors, the
user refines their understanding of the space of possible designs around the original and
reference photo and progressively establishes the precise form of the design goal. However,
as discussed in Section 6.1, the concurrent style transfer techniques are not designed to
serve such exploratory design processes. In particular, the end-to-end transfer methods
would not allow exchangeable combinations of step-by-step explorations consisting of trials
and errors. Moreover, they would not facilitate a user’s intuitive understanding of the
possible design space, as how such a transfer affects the result is not easily predictable by
the user.

This motivates us to take advantage of parametric design, which has been established
by researchers and practitioners to facilitate an exploratory journey based on human
cognitive processes. Again, it is known to induce creativity by helping users construct and
expand their mental models about the space of possible designs [165, 91]. Furthermore, the
combination of the presented interaction design with existing tools can foster the exploratory
design processes from the following perspectives.

Expressive parameter sets In parametric design, the parameter set inherently con-
strains the space of potential designs, and thus, it is important that the parameter set
possesses sufficient expressiveness to cover all of the user’s intentions. In this regard,
we can expect that the expressiveness of existing editing tools that a specific user is
familiar with would align with the user’s design intentions.

Transparent transformations To facilitate users’ exploratory design processes, it is
essential to enable users to predict how each parameter affects the result, sometimes
even without actually trying them, which is often reflected in many editing tools for
parametric design. Moreover, we can expect that users have an understanding of the
transformation behaviors of a tool that they are familiar with.

Non-destructive trials and errors As mentioned above, exploratory design processes
comprise nonlinear and unstructured trials and errors, such as revoking a specific
effect that was manipulated at the beginning of the design process. We can benefit
from existing tools that enable users to perform a lot of trials and errors iteratively
by reverting a specific transformation or exchanging it with other transformations.

By enabling these points with off-the-shelf ML models for style transfer, the presented
interaction design can realize seamless integration of ultra-realistic style transfer techniques
into exploratory design processes, as illustrated in Figure 22.
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Figure 22: Since the presented interaction design shows the parameters to imitate style transfer
within the provided parametric transformations, the user can continue further edits in the imitating
result to explore its variations (e.g., disabling some transformations or changing the strength) in
the parameter space.

6.2.2 Computational framework

Such an interaction design can be realized in the following manner. Let us consider an
original input x and a reference sample ŷ as well as a set of parametric transformations
{T1 (·; θ1) , T2 (·; θ2) , · · · , TN (·; θN )} that are controlled by parameters θ = {θ1, θ2, · · · ,
θN}. N denotes the number of transformations available in an existing tool to be used
for parametric transcription. We want to optimize θ so as to make the transformed result
y = T1 ◦ T2 ◦ · · · ◦ TN (x;θ) as similar to ŷ in terms of their styles as possible.10

This framework assumes an off-the-shelf model that can measure the perceptual distance
in their styles. For example, an encoder network Es

Y (·) that outputs the latent representation
of the style, such as the ones mentioned in Section 6.1, can be used here. In other words,
what this framework have been calling style is defined by the off-the-shelf model, or indeed,
the data used for its training. Now, the optimization target can be formulated as

θ̂ = argminθ∥Es
Y (T1 ◦ T2 ◦ · · · ◦ TN (x;θ))− Es

Y (ŷ) ∥.

In this case, since the encoder network in GANs is trained to output latent variables that
match a specific prior distribution, we can choose an appropriate norm function to measure
their distance depending on it. For example, L1-norm is empirically known to perform well
for the comparison of latent variables from the prior N (0, 1) [130].

In sum, this framework is characterized by four elements: original input, reference
sample, set of parametric transformations, and perceptual metric. Its goal is to exploit the
provided transformations applied to the original input so as to obtain a transformed result
having a style similar to that of the reference sample. This would be easy for humans but
is challenging for computers because the transformed result cannot be directly compared
to the reference sample, as they have different contents. The perceptual metric is thus
introduced by leveraging an off-the-shelf model, which enables the comparison between their
styles and the optimization of the parameters of the transformations as formulated above.

10For simplicity, the composed transformation T1 ◦ T2 ◦ · · · ◦ TN (·;θ) is regarded to behave as X → Y.
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By exchanging the four elements, this framework can be applied to various situations, as
presented in Sections 6.3 and 6.4.

Another key point is the use of black-box optimization algorithms, which frees this
framework from constraints on the properties of parametric transformations, such as their
differentiability or smoothness. At the same time, it enables users to freely replace the set
of parametric transformations so that they can utilize various existing tools to meet their
demands. Here, Bayesian optimization [264] is employed since it is efficient in terms of the
number of function evaluations and allows discrete variables to be optimization targets.
In the following scenarios, Optuna [4] was used owing to its ease of integration. Note
that the off-the-shelf model used for the perceptual metric is not limited to the encoder
network in GANs but can be based on other networks, such as variational autoencoders [71]
and flow-based models [151], as long as they map the style to a latent representation
well. Moreover, this independence from specific models allows us to incorporate unseen
off-the-shelf ML models to be proposed in the near future for domains other than those the
following scenarios consider.

6.3 Experiment 1: Photo style transfer in Instagram

This chapter first presents the scenario of transcribing photo style transfer using the
presented framework. To demonstrate that it can employ various tools as a source of
parametric transformations, this experiment considers transcribing into Instagram.

6.3.1 Related work

There are many methods that leverage ML technologies for photo style transfer [142]. For
example, Li et al. [170] extended the method proposed by Luan et al. [183] to incorporate
with an evaluation network, in an analogous manner to GAN-based methods described in
Section 6.1. As discussed there, however, these end-to-end methods are not designed to
facilitate the intuitive exploration of the variations of the transferred results. I acknowledge
that there are some studies that predict suitable parameters, such as saturation and
brightness, for photo enhancement instead of performing such an end-to-end transfer [221,
126]. Nevertheless, these methods are aimed at obtaining parameters to realize a professional-
like appearance by assuming the availability of a dataset of professionally edited photos.
Thus, they are not able to serve exploratory processes that use an arbitrary reference photo
as a loosely specified goal.

6.3.2 Implementation

Again, this scenario considers optimizing the parameters of transformations available on
Instagram. However, Instagram provides its photo editing functions in iOS and Android
apps and does not provide APIs, which led to the use of UIAutomator, a testing library
for Android apps, to control the Instagram app running on an Android emulator. For a
perceptual metric, an off-the-shelf model (encoder network) of neural photo style transfer
published by Li et al. [170] was used, which was trained to encode a reference photo into
its style representation during the end-to-end photo style transfer. In each optimization
step, the framework first sampled parameters to try next from Optuna [4]. Then, via
UIAutomator, it applied all transformations, such as adjusting brightness or vignette, as
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Table 18: Distribution of the collected responses indicat-
ing how many times the imitating photos in each group
(obtained by the presented framework or by the human
participants) were placed at each rank. Ranked first
means that the evaluators judged the imitating photo to
be the one most similar to the given reference photo.

Group #1 #2 #3

Parametric transcription 105 87 108
Participant A 92 99 109
Participant B 103 114 83

Table 19: Result of the ART test to the
responses in Table 18. Query refers to
the pair of the original and reference
photo, and its effect indicates the differ-
ence in the responses among the ques-
tions.

Effect F df p-value

Query 0.02 9 0.999
Group 0.88 2 0.417
Query × Group 7.15 18 < 0.001

well as choosing a photo filter from 24 provided filters based on the sampled parameters.
The transformed photo was cropped from the screenshot and provided to the off-the-shelf
model to compare its style with that of the reference photo. Finally, the perceptual distance
to the reference photo was returned to Optuna as a score to be minimized until 1,000
iterations were performed. Note that Instagram yields the same result for the same set of
parameters without regard to the order of manipulating the parameters on the interface,
which freed us from optimizing the order.

6.3.3 Subjective evaluation

Here, the imitating quality of the presented framework was evaluated in comparison with
that of humans. For the same pair of original and reference photos, three imitating photos
were obtained, one by the framework and the others by human participants. The imitating
photos were evaluated by human evaluators recruited using Amazon Mechanical Turk
(AMT) in regard to their similarity to the reference photo.

Procedure First, imitating photos were prepared using the presented framework for
ten pairs of original and reference photos, which were taken from samples released by
Luan et al. [183]. For comparison baselines, two participants who had experience in using
Instagram were recruited and asked to edit the same original photo using Instagram to
look like the corresponding reference photo. Figure 23 shows some examples. Note that
comparison with the previous methods for photo style transfer would not be meaningful
because, as described in Section 6.2.1, they perform an end-to-end transfer, whereas our
aim is finding parameters for transformations available in Instagram to enable exploratory
design processes.

Then, 30 evaluators were recruited in AMT and asked to fill out a questionnaire
consisting of ten questions. In each question, they were presented with a reference photo
and three imitating photos, one of which was obtained by the presented framework and
the others by the human participants, and were instructed to rank them in order of their
similarity to the reference photo. Their responses were analyzed using aligned ranked
transform (ART) [259], which can analyze ranked data nonparametrically. This allows us
to examine the effect of the ways to obtain the imitating photos (i.e., by the presented
framework or by the human participants) in a manner similar to a two-way ANOVA test.

Results The distribution of the collected responses is shown in Table 18. The ART
analysis indicated no main effect from how the imitating photos were obtained, as indicated
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Figure 23: Examples of the original and reference photos as well as the imitating photos obtained
by the presented framework and human participants. The photos in the three right columns were
obtained by using Instagram to edit the original photos.

in Table 19, and thus implied that the presented framework demonstrated performance
comparable to that of humans in imitating the style of the reference photo. In other words,
the presented framework is applicable to the scenario of transcribing photo style transfer.

In addition, agreement among the evaluators for each question was examined by using
Kendall’s W . As a result, Figure 23 (d) and (e) were two of the cases that showed the
lowest agreement (W = 0.021 and 0.048, respectively). Looking at the imitating photos
for these cases, the dispersion of the responses for Figure 23 (e) can be attributable to the
almost identical appearance. On the other hand, the imitating photos in Figure 23 (d)
evoked the dispersion, though they seemed to vary in appearance. We can infer that this
was caused by the discrepancy between the original and reference photos, which made it
difficult to imitate the style using Instagram, and thus, none of the imitating photos was
similar enough to obtain the consensus of the evaluators. This dispersion would be resolved
by using editing tools with more expressiveness than Instagram.
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Table 20: Distribution of the collected responses
indicating how many times the imitating selfies in
each group (obtained by the presented framework or
by the human participants) were placed at each rank.

Group #1 #2 #3

Parametric transcription 118 92 90
Participant A 113 113 74
Participant B 69 95 136

Table 21: Result of the ART test to the
responses in Table 20. Unlike Table 19, it
suggests that how the imitating selfies were
obtained has a significant effect.

Effect F df p-value

Query 0.05 9 0.999
Group 18.97 2 < 0.001

Query × Group 4.73 18 < 0.001

6.4 Experiment 2: Facial makeup transfer in SNOW

Next, I considered transcribing facial makeup transfer into SNOW using the presented
framework. SNOW is one of the popular iOS and Android apps providing functions for
editing selfies with various makeup features.

6.4.1 Related work

As with photo style transfer, facial makeup transfer has involved various ML techniques,
such as GANs [100] or flow-based models [46]. For example, Gu et al. [100] exploited
disentangled latent representations of a face content and a makeup style, as described
in Section 6.1. However, these methods aimed to obtain a transferred selfie but did not
allow users to explore the variations of the results, which motivated us to apply parametric
transcription.

6.4.2 Implementation

Since SNOW also does not provide APIs, the Android emulator was used with UIAutomator,
as in Section 6.3.2. For a perceptual metric, an off-the-shelf model (encoder network) of
neural facial makeup transfer published by Gu et al. [100] was used, which was trained to
encode a reference selfie with makeup into the latent representation of its makeup style.
Here, although the original end-to-end facial makeup transfer had a generator to produce
a facial image from this latent representation, only the encoder was used. Then, Optuna
was used for 1,000 iterations to find parameters of the makeup transformations, such as lip
color and eyebrows, that minimize the distance to the reference selfie in the latent space.

6.4.3 Subjective evaluation

Procedure A subjective evaluation was conducted in the same manner as described
in Section 6.3.3. Ten pairs of the original and reference selfies were randomly selected
from the dataset of Gu et al. [100] to prepare imitating selfies by using the framework.
Two participants were also recruited and asked to edit the original selfies to look like the
reference selfies by using SNOW. Figure 24 shows the examples. Then, 30 evaluators were
recruited in AMT and asked to rank the imitating selfies ten times in the same manner as
before. Their responses were later analyzed using ART [259].

Results The distribution of the collected responses is shown in Table 20. Different
from Section 6.3.3, the main effect of how the imitating selfies were obtained was observed
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Figure 24: Examples of the original and reference selfies and the imitating selfies obtained by the
presented framework and the participants.

(p < 0.001), as presented in Table 21. Thus, Tukey’s post-hoc analysis was conducted,
which revealed significant differences between the selfies edited by Participant B and those
either edited by Participant A or obtained by the presented framework (p < 0.001) but
no significant difference between selfies edited by Participant A and those obtained by
the presented framework (p=0.57). Therefore, given Table 20, the presented framework
outperformed one human participant and showed quality comparable to that of the other
in regard to imitating the makeup style of the reference selfie. Along with Section 6.3.3, the
result suggests that this framework is applicable to various situations and can automatically
obtain parameters yielding human-level quality. In other words, it can enable users to
benefit from off-the-shelf ML models for style transfer in an explorable manner within
existing tools by presenting the parameters.
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6.5 Discussion

The two experiments have demonstrated the applicability of the presented framework in
various scenarios, corroborating the feasibility of the presented interaction design. This
supports Strategy #1 presented in Section 3.2, answering RQ1 and (indirectly) RQ2 of
Section 3.4. To facilitate the further application of the framework, I conclude this section
by discussing its distinction with related approaches and its limitations.

6.5.1 Comparison with existing optimization-based techniques

Prior to the presented framework, many optimization-based techniques have been proposed
for computational design support [193, 262], given that most design processes are parameter-
ized by a set of either continuous or discrete parameters in current editing tools (e.g., using
control panels including many sliders) [157]. In particular, researchers have developed
human-in-the-loop optimization techniques to deal with fuzzy optimization criteria that
involve perceptual metrics or preferences. For example, evolutionary computation has
been leveraged in combination with an iterative human evaluation to solve perceptual
optimization problems [292]. Bayesian optimization has also been used for human-in-
the-loop optimization frameworks [33, 158] because it requires only a small number of
function evaluations to find a good solution [264] and thus reduces the amount of human
evaluation required when used in human-in-the-loop optimization. For situations where
the distance to the reference sample can be calculated by computers, optimization-based
methods that work without human evaluation have been employed. Such an approach
for fitting parameters to replicate a reference sample via optimization is often referred to
as inverse design [193]. Similary, inverse procedural modeling [294, 125] searches for an
optimal combination of parametric procedures and their parameters for replicating a given
reference sample. One of its primary motivations is to support further editing of the result
by tweaking the parameters, which is common to our motivation.

These frameworks differ from the presented framework, however, in that it does not
assume that the reference sample and replicating result can be directly compared, e.g., by
pixel-wise comparison. Specifically, in transcribing style transfer effects, even applying the
optimal transformations to the original input does not yield a transformed result that is
identical to the reference sample because the result and the sample have different contents.
Thus, while inverse design tries to exactly reproduce the reference sample based on a direct
comparison, this framework is required to perform the optimization based on a content-
invariant comparison, as illustrated in Figure 25. The presented framework addressed this
point without the help of human evaluation by leveraging an off-the-shelf ML model to
obtain a perceptual metric, which enabled new application scenarios that are intractable to
conventional inverse design approaches. Note that, by focusing only on the computable
aspects as the optimization objective, we can deal with style transfer in a similar manner
to a conventional parameter-fitting problem, like using color transfer methods based on
the color distribution comparison [243, 233] rather than photo style transfer. However, the
color distribution is only one aspect of the photo style, and the restriction imposed by such
a computable comparison undermines the expressiveness of the obtained results.

Moreover, the tool-agnostic applicability of the framework is another of its advantages.
In particular, I acknowledge some methods in inverse design that involve a perceptual
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Figure 25: Difference between the presented framework and previous methods assuming human
evaluation or parameter-fitting situations. Since the framework is for transcribing style transfer
that is content-invariant, the transformed result cannot be directly compared with the reference
sample and thus requires perceptual metrics.

metric, analogously to the presented framework. Shi et al. [269] optimizes a procedural
texture model to resemble a reference texture, in a similar manner as Hu et al. [125],
leveraging a perceptual metric extracted from an off-the-shelf model to perform a style-
aware comparison, instead of the pixel-wise comparison. Still, this method is specifically
designed for a custom-made texture model, as it relies on the differentiability of the texture
model.

6.5.2 Limitations

Nevertheless, the presented framework has some technical limitations. For example, the
running time can be a hurdle for its practical use. In the case of transcribing photo style
transfer into Instagram, it took about an hour for 1,000 iterations. This is partially due
to the black-box optimization but mainly due to the overhead caused in manipulating the
Instagram app on an Android emulator using the testing library. As in humans editing photos
on Instagram, it takes at least a second for a single iteration applying all parameters on the
interface of the app. The running time can be shortened by performing the optimization
process in parallel or by targeting applications that provide APIs (e.g., Photoshop or
Blender) to reduce the overhead.

The presented interaction design also has several intrinsic limitations. First, the quality
of parametric transcription is constrained by the expressiveness of available parametric
transformations. When the styles of the original input and the reference sample are so
different that they are difficult to imitate with any combination of the available transforma-
tions, the imitating results will not be so faithful. In particular, content-aware style transfer,
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such as artistic portrait stylization [357], would be challenging to imitate by parametric
transformations available in existing photo editing tools. In addition, it does not cover
domains for which there is no tool providing appropriate parametric transformations. For
instance, there are some studies on transferring the style of human motions [363, 115].
Still, it is difficult to apply the presented framework to transcribing motion style transfer
parametrically because such human motion data is usually represented by the joint positions
on a frame-by-frame basis. Thus, there is no established mechanism to control it with a set
of parametric transformations.

Lastly, while the power of connecting with the parametric design was discussed in
Section 6.2.1, it has not entirely clarified how parametric transcription can contribute to
users’ creativity. For example, by taking advantage of the interaction design, it is possible
to realize a new design process starting from the imitation. Specifically, the parameters
provided by it can be utilized in various ways other than making the original sample similar
to the reference sample, e.g., making the original sample dissimilar by applying the obtained
parameters inversely. Such imitation-driven explorations would provide new inspirations
for creators, as Dalí [62] emphasized the importance of imitation as a source of creativity
when he said that “those who do not want to imitate anything, produce nothing.” Delving
deeper into how the presented interaction design can be utilized would add further insights
to the answer to RQ2.

6.6 Summary

This chapter introduced a new interaction design—parametric transcription of style transfer
effects—and a computational framework enabling it. Given an original input and a set of
parametric transformations, this framework automatically optimizes their parameters to
make the transformed result have a style similar to that of a reference sample by leveraging
a perceptual metric retrieved from an off-the-shelf ML model for style transfer. Then, unlike
end-to-end style transfers, the interaction design offers explorability of the variations of the
result by providing parameters of the transformations so that users can further edit the
result intuitively in a third-party editing tool. Through two experiments, it was confirmed
that the framework can be applied to various situations while achieving human-comparable
quality, suggesting the feasibility of the presented interaction design to contribute to users’
creativity by exploiting the intrinsic advantages of parametric design. In other words, the
effectiveness of Strategy #1 presented in Section 3.2 was exhibited through the fact that
they can derive interaction design to address user needs not only regarding productivity
support but also for creativity support. This directly answers RQ1 and provides supporting
evidence for RQ2, given the clear advantage of the integration of parametric design.
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7 IteraTTA: An interactive design for guiding novice users in
music composition with off-the-shelf text-to-audio models

This chapter also focuses on creativity support scenarios, specifically for novice users, given
that advances in ML technologies open up novel ways for a diverse group of individuals
to engage in creative processes [84, 206]. Specifically, music generation models can foster
creative expression among novice users, who may not necessarily possess formal musical
knowledge [40, 249]. Consequently, several approaches have been proposed to enable users
to control various musical attributes of generated audios, such as specifying the note or
rhythm density [295, 47] and chord progression [317, 61, 318]. Text-to-audio models [2,
177] are promising in terms of allowing users who are not familiar with the concepts of
such musical attributes to generate their own sounds. This raises the expectation that
providing novice users with off-the-shelf text-to-audio models will enable their creative
musical expressions.

Nevertheless, I argue that such a naïve solution would not directly contribute to
supporting the creativity of novice users. For example, the text-to-audio models rely on
annotated labels of music clips presented in their training datasets [90, 149, 73], which
primarily consist of musical descriptions such as genres, instruments, and moods. Therefore,
providing such information as a text prompt is crucial for enabling fine-grained control
over generated music audios. However, this may prove challenging for novice users due
to disparities in artistic vocabulary among individuals with varying levels of musical
knowledge [290]. Experimentally, it has been suggested that non-musicians tend to rely more
on abstract concepts, such as the pleasantness or complexity of music, when appreciating
musical pieces [97], which may pose difficulties in fully exploring various text prompts. This
necessitates the preparation of tailored ML models attuned to the vocabulary of novice
users, which poses not only the challenges mentioned in Section 2.3 but also the risk of
losing fine-grained control over the generated audios.

To overcome this challenge, this chapter presents IteraTTA, an interaction design
dedicated to the text-to-audio (TTA) music generation processes of novice users (Figure 26).
This is based on Strategy #2 in Section 3.2 and designed to allow them to learn how to
communicate with off-the-shelf text-to-audio models effectively. It first presents novice users
with an opportunity to encounter new vocabulary by transforming their loosely-specified
theme phrase into variations of relevant, rich-described text prompts. Analogously to
Chapter 6, this interaction design enables iterative exploration of both text prompts and
audio priors so that they can gain a comprehensive understanding of the space of possible
results and how each word in the text prompts can be mapped in the space. Here, the
effectiveness of this interaction design was confirmed by deploying it as a publicly available
Web-based interactive system, which allowed us to analyze the diverse ways in which users
utilized it in their creative processes. The results and discussions shed light on ways to
utilize off-the-shelf models developed in the music information retrieval (MIR) community
to unleash the creativity not only of expert users [7] but also of individuals with varying
degrees of musical knowledge. They also demonstrate that Strategy #2 can generate an
effective interaction design harnessing off-the-shelf models, indicating a positive response to
RQ1 and RQ2 of Section 3.4.
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Figure 26: IteraTTA is an interaction design dedicated to allowing novice users to show their
creativity in text-to-audio music generation processes. It provides a) computational guidance for
constructing initial prompts and b) dual-sided iterative exploration of text prompts and audio
priors.

7.1 Related work

To situate the presented interaction design, this chapter first reviews existing techniques
for music generation and interaction designs for supporting them.

7.1.1 Music generation techniques

Music generation has been one of the central topics with the MIR community [246, 80,
176, 32, 67], and various ML technologies, specifically generative models, have been widely
employed for this purpose [139, 67]. While methods for symbolic music generation that
output MIDI files have been popular [353, 72, 129, 131, 124, 202, 360], some methods
use generative models to directly output audio for leveraging their expressiveness [69, 38,
133, 226]. For example, Jukebox [69] and RAVE [38] use variational autoencoders and
autoregressive models trained on large-scale music datasets to generate diverse music audios.

Controllability in music generation has been also emphasized [295, 47, 317, 61, 318,
3, 132, 212] because it is vital to open up its applications for supporting users’ creative
processes [315, 128]. For instance, Music FaderNets [295] allows users to modify the rhythm
and note densities of generation results, while Music SketchNet [47] enables them to specify
pitch contours and rhythm patterns. Wang et al. [317] and Dai et al. [61] have proposed
methods to further constrain the chord progression of generation results. However, as
mentioned at the beginning of this chapter, users are not always familiar with such concepts,
and then, they would have difficulties in using these methods to obtain the music audios
they want to generate. Note that some methods [132, 212] provide perceptual control, which
does not require extensive musical knowledge, such as emotion-based musical generation.
Nevertheless, they are based on Russell’s valence-arousal model [256] consisting of four
classes, which limits the range of controls and may hamper users’ agency [111] when the
methods are used to support their creative processes.

In this context, concurrent text-to-audio models [2, 177] can be an effective tool for
such novice users. These models learn the relationship between music audios and their
text descriptions (more specifically, latent representations encoded from the descriptions by
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RoBERTa [181]) and use it to guide results in generating new audios from an inputted text
(i.e., text prompt). As RoBERTa is capable to encode text prompts with variable length
and content, the models can provide flexible control without requiring specific musical
knowledge of rhythm patterns or chord progressions. Moreover, they allow users to constrain
generation results not only by text prompts but also by audio priors, ensuring that the
results have similar characteristics to the priors. For example, the diffusion model [250]
employed by AudioLDM [177] usually uses Gaussian noise for the seed of its generation
process, but by using a noise-infused audio prior, we can obtain generation results preserving
the characteristics of the provided audio.

Here, text-to-image models that use similar schemes have been shown to unleash the
creativity of novice users, allowing them to iteratively explore open-ended variations of
text prompts [224] and customize their intermediate results by specifying image prior
constraints [86]. Similarly, text-to-audio models can be leveraged to provide users with such
iterative exploration or customization. However, it is also expected that text-to-audio music
generation processes may pose several specific difficulties, as explained at the beginning of
this chapter. This motivated the exploration of interaction designs that can overcome these
address challenges to leverage off-the-shelf ML models to address the needs of novice users.

7.1.2 Interaction design for music generation

There is a series of research on building interactive systems to let users use music generation
techniques effectively [274, 127, 182, 242, 370, 373, 374]. MySong [274], for instance, involves
a music accompaniment generation model, with which users can control the happiness
or jazziness of generation results. Louie et al. [182] proposed an interactive system for
novice users so that they can use a symbolic music generation technique with control of
happiness or randomness. This also allows users to constrain generation results by providing
music priors, which was experimentally confirmed to be effective in iteratively refining the
results. Zhou et al. [373, 374] utilized a user-in-the-loop Bayesian optimization technique to
enable novice users to explore melodies composed by a generative model iteratively. These
interaction designs underscore the significance of providing controls and supporting iterative
exploration to facilitate the creativity of novice users using music generation techniques.
Consequently, providing the off-the-shelf text-to-audio models to novice users would be
highly suitable for this purpose, as they offer more flexible control, compared to using
parameters like happiness, while also allowing the use of audio priors. In the following
section, I discuss why inviting the users to learn how to effectively communicate with the
model is important to achieve this vision.

7.2 Design considerations

As stated at the beginning of this chapter, the aim here is to leverage off-the-shelf text-
to-audio models to facilitate the creative expression of novice users, regardless of their
musical knowledge. To this end, I embarked upon an examination of potential challenges
that these users may encounter during text-to-audio music generation processes to discuss
ways to navigate them via interaction design. Guided by the principles of HCI, the think-
aloud protocol [332, 5] was utilized by involving three volunteers who self-reported that
they possessed no formal musical training beyond compulsory education. Specifically, the
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volunteers were provided with access to one of the off-the-shelf text-to-audio models [177]
on Google Colab11 using its official implementation,12 which enabled them to provide any
text prompts and subsequently listen to three music audios generated for each of the text
prompts. Here, since the remotely-participated volunteers were Japanese speakers recruited
via word-of-mouth communication, they were told that they can use DeepL Translator13 to
translate text prompts into English to obtain better results with the off-the-shelf model
that is mainly trained on the dataset with English text labels [90, 149, 73]. They freely
used the model for approximately 30 minutes while sharing their screens on a video call and
verbalizing their thoughts and feelings, which allowed the identification of the challenges
that they encountered and the factors that contributed to these challenges. I then conducted
semi-structured interviews and analyzed their responses using open coding [284] to validate
the challenges identified and to gain further insight into the reasons behind them. Finally,
the following design considerations were yielded by examining how we can construct an
interaction design that guides them to overcome the challenges based on Strategy #2 in
Section 3.2.

7.2.1 Computational guidance for constructing initial prompts

It was observed that the volunteers frequently encountered difficulty in formulating appro-
priate text prompts to initiate their use of the model. For example, one volunteer entered
the phrase “a song sounds like star wars,” resulting in audio containing a battle cry with
a space-like sound effect. This can be attributed to the characteristics of the text labels
in the dataset used to train the off-the-shelf model [90, 149, 73]. Specifically, the labels
of music clips consist primarily of musical descriptions such as genres, instruments, and
moods, like: “An orchestra plays a happy melody while the strings and wind instruments
are being played [73].” Therefore, providing such a precise description would be essential to
ensure that the off-the-shelf model trained on the dataset generates music audio as intended.
The volunteer was unable to generate music-like audio until he attempted several prompts
and finally entered “solemn music starting with a trumpet fanfare.”

In the context of creativity support, two underlying factors could explain the aforemen-
tioned observation. First, an inherent gap in artistic vocabulary exists between expert and
novice users [290]. Without deep musical knowledge, it can be challenging to conceive a
precise description of music audios. Additionally, novice users often have loosely-specified
goals when starting a creative endeavor [293, 186], as discussed in Chapter 6. They re-
fine their objectives gradually by exploring the space of possible results through iterative
exploration [305, 296]. However, the dependency of off-the-shelf text-to-audio models on
precise descriptions of clearly-defined goals makes it difficult for novice users to initiate such
exploration. This suggests that supporting them computationally in constructing initial
prompts could potentially facilitate the creativity of novice users.

11https://colab.research.google.com/
12https://github.com/haoheliu/AudioLDM
13https://www.deepl.com/translator
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7.2.2 Dual-sided iterative exploration of text prompts and audio priors

It was also observed that the volunteers encountered challenges in efficiently exploring
the generated results. One volunteer who had prior experience with text-to-image models
mentioned the point:

Unlike text-to-image models, comparing various results at a glance was difficult
with the text-to-audio model. So, finding a text prompt reflecting my intention
most faithfully became much tough.

In other words, iteratively trying different text prompts would not necessarily assist users in
comprehending the space of potential results, although it is vital for novice users to refine
their loosely-specified goals [305, 296]. Therefore, users cannot determine which direction
would be closest to their goals and what text prompt to try next. Another volunteer
mentioned an issue he faced:

I once found a generation result with a good melody, but I wanted to change its
tone. So, I added ‘with a flute’ to its text prompt and regenerated. However,
the melody was then completely changed, which was frustrating.

This implies that we need to let users utilize not only text prompts but also audio priors to
constrain the tune of generation results. In sum, supporting the creativity of novice users in
music generation processes with off-the-shelf text-to-audio models requires enabling them
to efficiently explore variations of both text prompts and audio priors, allowing them to
iteratively refine their goals by understanding the space of possible results and acquiring
new vocabulary.

7.3 IteraTTA

Based on the above design considerations, this chapter presents IteraTTA, an interaction
design dedicated to text-to-audio music generation processes. It was implemented as a Web-
based interactive system, allowing novice users to instantly benefit from the off-the-shelf
text-to-audio models in their creative processes.

7.3.1 Design

As illustrated in Figure 26, this requires users to first input a theme phrase for music
audios to generate. The inputted phrase does not necessarily have to include precise
musical descriptions since IteraTTA leverages an off-the-shelf large language model to
derive such descriptions suitable for a text-to-audio model using knowledge embedded in
such a model [323]. Specifically, the large language model is queried as: “Please give me four
variational lists of comma-separated phrases describing what does a music clip of ‘[theme
phrase] ’ sound.” It then uses the four responded phrase lists as a variety of the first text
prompts to start the music generation processes in parallel. This feature allows novice users
to translate loosely-specified goals in their minds into musical descriptions, which can also
help them to encounter new vocabulary and envisage variations of text prompts to explore.

IteraTTA then generates three music audios for each of the four prompts. The generated
audios are arranged in two dimensions (see Figure 26), which enables novice users to
understand how different music audios are generated by different text prompts, and also,
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how different music audios are generated by the same text prompts. This is intended to
assist users in identifying which text prompts and audio priors are closely aligned with
their goals and which direction is worth exploring. If a user identifies a suitable candidate
text prompt, they can customize the prompt and generate new music audios with it.
Alternatively, if the user discovers a suitable music audio, they can use it as an audio prior
to generating new music audios. In essence, the user can explore the subspace of possible
results that are proximate to their goals by constraining either text prompts or audio priors,
while gradually refining their goals by themselves through understanding the effect of each
word in the text prompts on the results.

The presented interaction design has incorporated several features to facilitate the
exploration of text prompts and audio priors, as shown in Figure 27. For instance, when a
user specifies an audio prior, IteraTTA enables the user to compare generated results with
it. It also offers an instant editing feature of text prompts, allowing users to amplify or
suppress the sound of a selected instrument. This is achieved by simply adding a phrase of
“with strong [instrument] ” or “with no [instrument] ” into a text prompt, but it provides an
example of how they can modify generation results through prompts.

�

�

Figure 27: To facilitate the exploration of text prompts and audio priors, IteraTTA allows a)
comparison of generation results with an audio prior and b) instant edit of a text prompt.

7.3.2 Implementation

As mentioned above, IteraTTA was implemented as a Web-based system to invite novice
users to try music generation with it. The implementation of its back-end server utilized
Python with FastAPI and incorporated an API of GPT-3.514 to construct initial prompts,
while AudioLDM [177] was employed to generate the music audios. The length of music
audios to generate was predetermined at 10 s so that a GPU server harnessing an NVIDIA
RTX 2080 Ti can afford the generation of 12 audios (3 audios × 4 prompts) simultaneously.
On average, the generation process takes approximately 15 s. In addition, DeepL API15

was used to translate text prompts into English when they were provided in non-English
14The gpt-3.5-turbo of https://platform.openai.com/docs/models/gpt-3-5 was used.
15https://www.deepl.com/docs-api
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languages because it was observed that autotranslation led to better results in Section 7.2.
The front-end interface of IteraTTA utilized Vue.js, enabling users to download the generated
music audios or share them on Twitter.

7.4 Analysis

To investigate the effectiveness of IteraTTA in supporting diverse users in the wild, I
deployed it as a publicly available Web-baed interactive system in Japanese. Within two
days of release, 8,831 users generated 246,423 music audios. This section discusses the
insights extracted from their usage logs and their responses to a form, which was linked
from the Web system so that they can share their opinion and feedback voluntarily.

7.4.1 Diversity of theme phrases

I first examined the theme phrases that users inputted to initiate text-to-audio music
generation processes and found that they were highly varied. Some users provided music-
related phrases, such as “nice city pop” and “cute future bass,” while others were more
specific, like: “80’s hip hop that break dancers would dance to.” There were also phrases
expressing more abstract ideas, such as “Arabian caves” and “silent dream of a priestess.”
Figure 28 visualizes the words often used in the translated phrases in the form of a word
cloud, showing their diversity.

Figure 28: Word cloud of theme phrases the 8,831 users inputted on the Web system.

To explore the role of IteraTTA, the theme phrases inputted by the users and the
text prompts derived from them by the large language model were compared to the text
labels in the dataset used for training the text-to-audio model. Specifically, 1,000 cases
for each of the theme phrases, text prompts, and text labels16 were sampled to calculate
their representation vectors using the same pretrained model of RoBERTa [181] as the
text-to-audio model. The distribution of the vectors was then visualized using t-SNE [187],
as presented in Figure 29. This indicates that, by leveraging the off-the-shelf large language
model to derive text prompts, IteraTTA successfully bridged the gap between the diverse
users’ theme phrases and the text labels in the training dataset. In fact, it was found
that the large language model derived text prompts containing rich musical descriptions
even from abstract phrases, such as “otherworldly harmonies, delicate strings, minimalistic
percussion, dreamlike vocals” for “silent dream of a priestess.” These results suggest the

16For the text labels, labels containing “music” were extracted from AudioCaps [149].
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effectiveness of guiding the construction of initial prompts to support the creative processes
of novice users, as discussed in Section 7.2.1.

Figure 29: Visualization of the representation vectors of the theme phrases inputted by the users,
the text prompts computationally derived from them, and the text labels in the training dataset.

7.4.2 Journey of iterative exploration

I also investigated how the users interacted with the generation results produced by IteraTTA.
Specifically, the interaction log of the Web system was analyzed, yielding Figure 30. While
some users just tried the exploration feature once, it was found that others made iterative use
of the feature, alternating between providing text prompts and audio priors. Interestingly,
one user repeated this refinement process 32 times, specifying text prompts 14 times and
audio priors 18 times before sharing their final result on Twitter. These points imply that
the presented interaction design, which enables dual-sided iterative exploration, helped the
users effectively utilize the off-the-shelf text-to-audio model.

Figure 30: Visualization of how the users utilized the dual-sided exploration of IteraTTA.

7.4.3 Unleashing the creativity of novice users

I lastly analyzed the users’ responses to the feedback form, which received 33 responses in
total. Overall, most of them expressed their affirmative experiences with the text-to-audio
music creation processes, like:
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It was a very interesting trial. I can interact with it throughout the day.

In my personal opinion, it can be used as a source of sampling materials and
an idea generator. As a person who usually composes music, I never had any
negative feelings about composing from text using this. It is wonderful.

The latter comment suggests that the features of IteraTTA prepared for novice users
can also benefit experienced users in different ways. It is also notable that the users left
comments implying the importance of the design considerations discussed in Section 7.2,
such as how they appreciated the open-ended exploration starting from loosely-specified
theme phrases.

It was fun to encounter songs that fit the theme I provided but I had never
heard before.

I really enjoyed the points that I could take advantage of ChatGPT’s ability to
associate and verbalize even seemingly unconnected ideas, which allowed me
to provide crazy theme phrases that would not be understood by a human. I
also learned a lot about how to describe songs by looking at the derived text
prompts.

These comments specifically highlight the power of interaction designs that can help users
learn how to effectively use off-the-shelf ML models.

Interestingly, in the form, some users left a successful prompt that they reached after
exploration:

I would like to report that including a phrase of ‘simple progression’ or limiting
the number of tracks yielded stabilized music audios, like: ‘Ideal harmonious
song: balanced instrumentation, band sound, simple chord progressions, rhyth-
mic drum patterns, catchy pop melody, up to 12 tracks.’

Adding ‘clear sound quality’ produces less noisy audios.

It is surprising that, even though no explicit description of the behavior of the off-the-shelf
text-to-audio model was provided, the users were able to gain such knowledge by themselves
through the iterative exploration with IteraTTA. While such prompt modifiers (also known
as quality boosters) [223] that influence results in a specific way have been discovered for
text-to-image models in a community-driven manner [223, 224], the above comments would
be the first examples for text-to-audio models, to the best of our knowledge. We can
conclude that this is a manifestation of users’ creativity in text-to-audio music generation
processes and would be hard to derive without IteraTTA, specifically, its design to foster
users’ learning.

7.5 Summary

This chapter introduced IteraTTA, an interaction design specifically dedicated to supporting
novice users, who do not necessarily have rich musical vocabulary, in their text-to-audio
music generation processes. This is guided by the strategy of fostering users’ understanding
of how to effectively use off-the-shelf text-to-audio models and built on two main features
a) computational guidance for constructing initial prompts and b) dual-sided iterative
exploration of text prompts and audio priors. The former can help novice users translate
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their loosely-specified goals into text prompts, which serve as starting points for exploration
while providing an opportunity to encounter new vocabulary. The latter is important for
enabling them to comprehend the space of possible results and the effect of each word in
text prompts on the results, helping gradually refine their goals. How diverse users can
utilize IteraTTA in their creative processes was confirmed by deploying it as a publicly
available Web-based interactive system and analyzing users’ behaviors, which highlighted the
importance of these design considerations in supporting the users’ creativity. In combination
with the findings from Chapters 4 to 6, this result suggests that Strategy #2 outlined
in Section 3.2 is capable of generating effective interaction designs using off-the-shelf ML
models to address diverse user needs, thereby confirming RQ1 and RQ2.
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8 BeParrot: An interaction design for training users to tran-
scribe unclear speech with off-the-shelf speech recognition
models

This chapter presents the last example in this dissertation, which addresses the challenge
in speech transcription with off-the-shelf ML models. Needless to say, the importance
of speech transcription is widely acknowledged because the acquired text can be used
in diverse situations, e.g., searching audio content [220], increasing the accessibility of
videos [117], analyzing language production [200], and developing various speech processing
methods such as speech recognition [209] and voice conversion [276, 8]. However, manual
transcription is time-consuming and tedious, and thus, previous studies have attempted
to address this issue by utilizing ML technologies. Specifically, a post-correction approach
has been applied to handle this issue, in which an automated speech recognition (ASR)
model is first applied to the speech to transcribe, and then a human corrects errors in the
recognition results while listening to the audio. It has been confirmed that the improvement
of ASR models allows people to correct fewer errors in the recognition results, thereby
reducing the total time for transcription [179, 185].

In other words, the efficiency of the post-correction approach is highly dependent on
the accuracy of ASR models. In particular, this approach is known to be less effective when
the performance of the ASR models is low, e.g., when the audio to transcribe is unclear
due to its recording condition. Gaur et al. [88] and Sperber et al. [280] experimentally
demonstrated that the word error rate (WER)17 is desirable to be less than 30% for the
post-correction approach to be effective. Therefore, previous studies have focused on
applying this approach to the transcription of clear speech, e.g., audio from TED Talks [88,
280], news [316], and lectures [201]. Given that transcribing unclear speech (e.g., speech
with a lot of noise or reverberation) is still difficult for most ASR models [281, 302, 105], it
can be expected that this post-correction approach does not effectively help users in such
cases. While it is feasible to customize ASR models for improved accuracy, this involves
not only the preparation of a dataset that has been recorded under the same noise and
reverberation conditions and transcribed beforehand [179, 280] but also the challenges
discussed in Section 2.3.

To overcome this challenge, this chapter presents BeParrot, an interaction design that
enables efficiently transcribing unclear speech with off-the-shelf ASR models. Informed by
Strategy #2 presented in Section 3.2, it is designed to foster the skills of users in respeaking.
Respeaking is the method that has primarily been used to create subtitles for television
programs in real time [135, 194, 252]. Rather than directly inputting the audio of the
programs into an ASR model, respeaking involves a human respeaker who repeats the
speech of the programs as if speech shadowing [195]. The respeaker’s utterance is inputted
into an ASR model that outputs the corresponding transcription in real time, which is used
as subtitles after the respeaker or another person manually corrects errors as necessary. This
method is effective when the ASR model can recognize the utterance of the respeaker more
accurately than the original speech in television programs, thereby reducing the number

17WER denotes the percentage of words that are not correctly recognized. The lower value of WER
indicates that the recognition results contain fewer errors and are more accurate.
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of required manual error corrections. Analogously, we can expect that respeaking can be
used to improve the efficiency of transcribing unclear speech. This is because, if people can
repeat the content of speech with noise or reverberation in a quiet environment with a clear
voice, their utterance will be recognized accurately using an off-the-shelf ASR model. Then,
this reduces the number of errors in the recognition results to be post-corrected, compared
to directly inputting the unclear speech into the ASR model.

On the other hand, it is known that the effectiveness of respeaking is highly dependent
on the proficiency of the respeaker [252, 253]. In particular, respeakers incur high cognitive
demand, as they are required not only to listen to what is being said in order to repeat it
without delay but also to simultaneously memorize the speech content for post-correction
of errors in the recognition result. In addition, respeakers should be able to utter clearly
without stuttering or stammering so that utterances are transcribed accurately by the ASR
models. These points necessitate BeParrot to be carefully designed to help users get used
to respeaking, as suggested by Strategy #2 of Section 3.2. To this aim, BeParrot utilizes
the history of how a user has interacted with its interface (e.g., retrying utterance and
editing recognition results), which would reflect the user’s ability of respeaking, to provide
two key features in BeParrot: parameter adjustment and pronunciation feedback. The
parameter adjustment feature automatically updates two parameters, the playback speed
and the length of each speech segment, because these parameters determine the difficulty
of respeaking according to previous studies [252, 253, 251]. For example, when the user has
retried an utterance of the same segment, the user is likely to have trouble in respeaking
the segment, and then, the playback speed can then be automatically decreased. The user
of BeParrot can also manually adjust these parameters when they become accustomed to
respeaking and want to increase the playback speed or segment length. Furthermore, the
pronunciation feedback feature presents phonemes that are difficult to be recognized by the
off-the-shelf ASR model when pronounced by the user, which is derived from the history of
their manual error corrections. Then, the user can leverage the feedback to improve their
pronunciations, especially of those the ASR model would not recognize correctly.

In this chapter, the effectiveness of BeParrot on different types of speech data was
evaluated by involving 60 crowd workers. The results successfully demonstrated that the
workers could transcribe the speech more efficiently with BeParrot than with a conventional
post-correction approach using the same off-the-shelf ASR model. Particularly, the effec-
tiveness of BeParrot was confirmed when the speech is unclear and difficult to recognize
using ASR models, e.g., speech with high levels of noise or reverberation [281, 302, 105].
In addition, comments from the workers qualitatively supported the design of BeParrot,
expressing their affirmative reception of both the parameter adjustment and pronunciation
feedback features. At the same time, this confirms the effectiveness of the strategies outlined
in Section 3.2 in supporting speech transcription with off-the-shelf ML models.

8.1 Related work

BeParrot is designed to address the user need for efficiently transcribing speech regardless
of the recording condition. To situate it, this section first reviews previously proposed
interactive systems for supporting speech transcription, most of which adopt the post-
correction of the recognition results of off-the-shelf ASR models. Then, the concept of
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respeaking is described, especially how it has been used and the difficulties novice users
encounter when performing respeaking.

8.1.1 Interactive systems for supporting transcription

To moderate the importance of speech transcription and its time cost, there are several
studies that propose supporting interactive system for transcription tasks, as mentioned at
the beginning of this chapter. For example, as one of the initial works, Barras et al. [18]
proposed an integrated text editor that visualizes a speech wave. Given the development of
ASR technologies, the post-correction approach has become widely used to assist speech
transcription [179, 185, 184, 201, 280, 316]. For example, Liu and Soong [179] developed a
handwriting user interface that allows users to correct errors in a convenient manner. Luz et
al. [184] developed a 3D game-based interactive system to support a collaborative correction
process by motivating users. These approaches assume that the speech to transcribe
can be recognized by ASR models with certain accuracy. For example, the WER of the
pre-correction transcription was reported to be 21.5% in the study conducted by Luz et
al. [185] and 28.8% in the study conducted by Miro et al. [201]. This setting is in agreement
with the findings of Gaur et al. [88] and Sperber et al. [280], who concluded that the WER
is desirable to be less than 30% for the post-correction approach to function.

However, depending on the nature of the audio source, this is not always feasible, even
with concurrent off-the-shelf ASR models. Specifically, the performance of the ASR models
is degraded when the speech is unclear, e.g., when the speech contains high levels of noise
or reverberation. For example, Tsunoo et al. [303] reported a WER of 48.6% with their
ASR model on a dataset of unclear speech [322] even though they leveraged various data
augmentation techniques involving reverberation simulation and adversarial training. Yet,
previous studies for supporting speech transcription often evaluated their approach using
clear speech, e.g., audio from TED Talks [88, 280], as mentioned at the beginning of this
chapter. By preparing a dataset collected under the same recording condition, it is possible
to customize ASR models to achieve high accuracy against unclear speech [179, 280], but it
imposes various difficulties mentioned in Section 2.3 and limits their applicability to a wide
variety of speech data. These limitations demanded a better interaction design that can
work without dependence on the audio source.

8.1.2 Respeaking

As mentioned at the beginning of this chapter, respeaking has been practically used by
many broadcasting stations, e.g., BBC [194] and NHK18 [135, 116], to create subtitles
for news programs or sportscasts in real time. To minimize the delay when creating
subtitles, respeakers must repeat the speech clearly without stammering such that the
repeated speech can be transcribed accurately by an ASR model. Therefore, broadcasting
stations assume professional respeakers who have completed specialized training [252, 253].
For example, Prazak et al. [236] described how Czech Television leverages respeaking,
stating that respeakers are required to undergo 75 hours of in-house training. In addition,
Waes et al. [312] found that respeakers are required to employ a variety of strategies to
limit information loss as much as possible.

18NHK is a Japanese government-owned public broadcasting station.
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Given that respeaking demands high proficiency, previous studies under-explored the
possibilities of novice users transcribing speech via respeaking. In fact, the difficulties
associated with mastering respeaking were discussed by Ghyselen et al. [92] as a reason
why they did not adopt this approach for transcribing a dialect corpus in their study. In
addition, Sperber et al. [279] empirically demonstrated that the effectiveness of respeaking
is strongly dependent on how accurately the respeaker’s utterances are recognized in a study
where two speakers tried transcribing TED Talks via respeaking. Vashistha et al. [308,
307, 306] employed a workaround in their studies by the introduction of segmenting and
majority-voting. Here, they deployed crowdsourcing transcription tasks in which speech
data were divided into small segments (less than 6 s), and the speech content of each segment
was uttered by five crowd workers via respeaking. The final transcription was obtained
via a majority vote among the recognition results of the repeated speech. Given that, we
can expect that respeaking can be a powerful tool for speech transcription if it is made
easier for novice users. In particular, it would be especially efficient for transcribing unclear
speech, which is typically challenging using the conventional post-correction approach (see
Section 8.1.1), because respeakers will be able to utter clear speech that is recognizable by
off-the-shelf ASR models without depending on the quality of the original audio. Therefore,
informed by the strategies in Section 3.2, this chapter introduces a new interaction design
that helps novice users utilize and get accustomed to respeaking.

8.2 BeParrot

This section explains the design of BeParrot, starting by explaining its two key features
that help novice users perform respeaking based on the findings of previous studies on the
training programs of respeaking. Subsequently, the implementation details of BeParrot are
presented.

8.2.1 Design

In speech transcription tasks, an audio clip to transcribe is typically divided into short
segments in advance, and each segment is transcribed sequentially by users. Similarly,
BeParrot assumes that each segment is transcribed via respeaking along with manual
correction. However, as mentioned in Section 8.1.2, respeaking is a highly demanding task
that is difficult for novice users. Thus, prior to developing BeParrot, I referred to studies
on training programs for professional respeakers [252, 253, 251]. Based on the findings of
these studies, two key features were constructed so that they would help novice users utilize
respeaking without requiring extensive training.

The first feature is parameter adjustment, which allows users to control both the
playback speed of the speech and the length of each speech segment dynamically during
the task. Relative to playback speed, Fresco [251] reported that, in some respeaker training
programs, trainees attempt to identify an optimal playback speed through multiple steps.
They stated that the optimal speed varies significantly for different people, and the speed
affects respeaking performance. These observations informed the adjusting feature of the
playback speed. In addition, the length of each speech segment was made adjustable to
allow users to control their cognitive load during the task. In fact, Fresco [251] reported
that trainees identified “multitasking” as the most difficult aspect of respeaking. Specifically,
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respeakers must clearly repeat what is being said while listening to and remembering the
speech, as discussed at the beginning of this chapter. Thus, it can be anticipated that
allowing users to adjust the segment length based on their ability would be helpful.

In addition to making these two parameters adjustable by users, BeParrot is designed
to automatically adjust the parameters based on users’ interaction history. Specifically, if a
user is experiencing difficulty in respeaking (e.g., retrying a specific speech segment over
and over), BeParrot automatically reduces the playback speed and segment length. This is
because the effectiveness of such automated adjustments has been confirmed previously in
the development of a tool to support language learning via speech shadowing [369].

The second feature is pronunciation feedback, where users are prompted to be careful
about pronouncing specific phonemes. Given the nature of respeaking, utterances should
be recognized accurately by the off-the-shelf ASR model, and respeakers must utter clearly
without stuttering or stammering [252]. Thus, this feature is prepared to increase awareness
of certain phonemes in utterances that are likely to be missed or misrecognized by the ASR
model. This feedback feature can be achieved by analyzing how users manually correct the
recognition results, which is described in detail in the next section.

8.2.2 Implementation

To realize these two key features, BeParrot was implemented in the form of a Web-based
interactive system (Figure 31). I implemented its interface in Japanese because a user study
is conducted on a Japanese crowdsourcing platform,19 as described later in Section 8.3.

Playback Speed
Segment Length

Next
Redo

ASR Results

Respeak Results

Final Transcription

Help

Misrecognized
Pronunciation

Figure 31: BeParrot interface. The interface was implemented in Japanese, and each text outside
the window indicates corresponding meanings in English.

As mentioned in Section 8.2.1, the entire audio clip to be transcribed is first divided
into short pieces using a voice activity detection technique [277], specifically webrtcvad.20

19https://www.lancers.jp
20https://github.com/wiseman/py-webrtcvad
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The split speech pieces, which are approximately from 0.1 to 3 s, are then concatenated
into a segment until its length exceeds the parameter specifying the length of each speech
segment using a greedy algorithm. Once the parameter is adjusted either manually or
automatically, the concatenation process is re-executed. In BeParrot, a user is supposed
to transcribe each of the concatenated segments in order via respeaking. Here, the user’s
utterance of a segment is recognized sequentially using a streaming ASR model, and the
recognition result appears in “Respeak Results” in real time. Note that the user can edit
errors in the text manually using a keyboard if necessary. Once the transcription for the
segment is finalized by clicking “Next”, it is concatenated to the entire transcription shown
in “Final Transcription”. Otherwise, if the user wants to utter the same segment again,
they can do so by clicking “Redo”. In addition, in a similar manner to the post-correction
approach mentioned in Section 8.1.1, the audio source to transcribe is recognized using an
ASR model in advance, and the result is presented in “ASR Results” for reference. Here,
the user can observe three transcriptions in a row that correspond to the speech of the
last, current, and next segment, respectively. In addition, there is a “Help” button in the
bottom-right area that the user can press at any time to view information about the usage
of BeParrot.

To achieve the parameter adjustment feature as described in Section 8.2.1, two sliders
were implemented, i.e., the “Playback Speed” and “Segment Length” sliders, to allow users
to adjust the playback speed and segment length, respectively. Note that these parameters
are also adjusted automatically based on the interaction records of the individual user.
Specifically, if the user retries uttering the same segment multiple times, BeParrot identifies
the user as having trouble uttering it without stuttering or stammering and slows the
playback speed by ×0.85. If the user stops playback in the middle of the segment, the
user may encounter “multitasking” difficulties with the long segment. Thus, BeParrot
automatically reduces the length of consecutive segments to the length they stopped at
with the decay parameter of 0.5.

The bottom-left area of BeParrot is used for the pronunciation feedback feature intro-
duced in Section 8.2.1. In “Difficult-to-hear Pronunciation”, words that are not recognized
by the streaming ASR model and added manually by the user using the keyboard are
listed in the order of the number of additions. In addition, “Misrecognized Pronunciation”
presents a list of moras that are often misrecognized by the ASR model based on how the
user corrected the recognition results of their utterances. This list is obtained by calculating
the optimal edit operations between the mora sequences of the original and corrected word
using the Wagner–Fischer algorithm [313]. The calculated edit operations over speech
segments allow BeParrot to identify how many times each mora was corrected and to rank
those that are frequently misrecognized.

Here, two ASR models are employed in BeParrot: one processes the audio clip in
advance, and the other processes the user’s utterances sequentially in real time. For the
former model, this implementation used an off-the-shelf model of Conformer [101], which is
one of the state-of-the-art ASR models based on both Transformer and CNN architectures.
The Conformer model was trained on a Japanese corpus using ESPNet [321], which is
an open-source end-to-end speech processing toolkit. For the latter ASR model, it used
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Google Speech-to-Text API,21 which allows us to transcribe streaming audio in real time.
The latency of respeaking (i.e., from the time a user utters to the time the corresponding
recognition result appears on “Respeak Results”) was approximately 800ms. Note that,
when using BeParrot, the user is required to wear headphones to avoid the original speech
from being mixed with the user’s utterances.

8.3 User Study

To confirm the effectiveness of BeParrot, a user study was conducted involving crowd
workers. The workers were asked to transcribe different types of speech data using BeParrot
or the conventional post-correction approach. Then, the time they spent in transcribing
the same speech and the accuracy of the obtained transcriptions were compared between
the two approaches, i.e., respeaking and post-correction.

8.3.1 Materials

This user study used three types of speech data: clear, radio, and historical speech. Each
type comprised two audio clips of three minutes, bringing six clips in total. Here, since
the crowd workers were recruited in Japan (see Section 8.3.2), the clips were prepared in
Japanese. The clear clips were taken from TED Talks recorded in a quiet environment. The
radio clips were prepared to evaluate the effectiveness of BeParrot on noisy speech because
they were taken from a radio broadcast in which two professional speakers debated while
background music was played. The historical clips were more challenging because they were
taken from two lectures from the 1970s. These clips contain high levels of reverberation as
well as noise because the lectures were recorded using a single microphone located in a large
auditorium. For each clip, its transcription text was also prepared as the ground truth
from the corresponding source (e.g., the TED Website for the clear clips) to evaluate the
accuracy of transcriptions obtained in this study. Using the ground truth, it was confirmed
in advance that the clips were sufficiently unclear to transcribe using the off-the-shelf ASR
model such that they resulted in a character error rate (CER) of more than 30%,22 as
shown in Table 23.

8.3.2 Design

A between-participant design was employed across the baseline and proposed conditions.
Here, I did not include a condition where a participant performs transcription tasks via
respeaking without the support of BeParrot, so to speak, vanilla condition. This is because,
in the initial exploration, it was found that novice users could not conduct respeaking in
such a vanilla condition, which is attributed to the difficulties associated with conducting
respeaking (see Section 8.1.2).

For the baseline condition, a Web-based system was prepared to allow the crowd workers
to transcribe speech using the post-correction approach. Similar to the system used by
Gaur et al. [88], the Web-based system comprised an audio player and presentation of

21https://cloud.google.com/speech-to-text/docs/streaming-recognize
22As mentioned in Section 8.3.3, the value of WER generally correlates with the value of CER, and thus,

the higher value of CER indicates that the recognition results contain more errors. In addition, the value of
WER is usually higher than the value of CER.
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the recognition results obtained by the ASR model. Its interface also replicated keyboard
shortcuts that Gaur et al. [88] implemented to allow the workers to play, pause, or rewind
5 s. After being presented the instructions on how to use this system, the workers assigned
to the baseline condition were asked to transcribe one of the six prepared clips. For the
crowd workers assigned to the proposed condition, BeParrot was provided to transcribe
the speech. Since it was expected that workers are unaccustomed to respeaking, they were
asked to first practice the use of BeParrot by transcribing a clear speech of 30 s23 after
watching an instructional video. This process took approximately 3.5 minutes on average.
Then, the workers were asked to transcribe one of the prepared clips in the same manner
as those in the baseline condition. Here, the implementation of BeParrot was customized
to record workers’ interactions, e.g., retrying an utterance, changing playback speed, and
correcting errors using a keyboard.

In addition, the workers were asked to complete a questionnaire after they finished
the transcription task. The questionnaire included the items from NASA-TLX [107, 37]
to compare the workers’ cognitive loads between the two conditions. In addition, for the
workers assigned to the proposed condition, there were questions to collect their opinions
regarding the usage of BeParrot, e.g., “how useful was the parameter adjustment feature? ”,
“how useful was the pronunciation feedback feature? ”, and “please write down anything else
you noticed about the experience of using this interface”. Their responses to these questions
were later analyzed using open coding [284] to enumerate major topics.

For each of the two conditions, 30 crowd workers were recruited and randomly assigned
to one of the six clips, resulting in five workers for each clip. The recruitment process
was performed on a Japanese crowdsourcing platform, and they were paid approximately
$10 for their participation. For the proposed condition, the workers were required to use
headphones or earphones (not speakers) so that they could perform respeaking without
trouble, as mentioned in Section 8.2.2. In addition, to exclude data of workers who have
an experience of respeaking in the past, two of the authors independently examined the
questionnaire responses from the workers of the proposed condition, but no cases were
confirmed.

8.3.3 Measure

To evaluate the effectiveness of BeParrot, two measures were prepared: time and CER.
Specifically, the time each worker spent transcribing clips of the same length was measured
and compared across the two conditions to verify whether BeParrot contributed to the
efficiency of the transcription task. The CER of the obtained transcriptions was also com-
pared to confirm the effect of BeParrot on transcription accuracy. Note that CER is widely
used to evaluate the quality of transcription in languages without space delimiters [162],
including Japanese [120], because the WER value calculated for such languages depends on
the quality of morphological analysis. Still, the value of CER generally correlates with the
value of WER while it is expected to be lower than WER, as in Petridis et al. [229].
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Table 22: Time crowd workers spent transcribing. The proposed condition significantly shortened
the time spent for the radio and historical clips.

Speech type Baseline (s) Proposed (s) Reduction (%)

Clear 1632.7 (±224.6) 1505.8 (±426.8) 7.8
Radio 2758.1 (±273.6) 1823.2 (±253.4) 33.9

Historical 2004.6 (±205.0) 1408.4 (±140.4) 29.7

Table 23: CER of the obtained transcription. No significant difference was found between the
baseline and proposed condition.

Speech type ASR Baseline Proposed

Clear 6.16 3.73 (±0.57) 5.75 (±1.02)
Radio 30.72 19.05 (±1.56) 24.81 (±2.69)

Historical 48.18 29.25 (±5.16) 29.10 (±2.17)

8.3.4 Results

The results are shown in Table 22 and Table 23. According to the t-test, it was found that
the workers assigned to the proposed condition spent significantly less time transcribing the
radio (p = 0.037, d = 1.01) and historical (p = 0.026, d = 1.08) clips. On the other hand,
no significant difference was found in CER for all clips. These points imply that BeParrot
contributed to the reduction of the time required to transcribe unclear speech (32.1 % in
total for the radio and historical clips24), compared to the conventional post-correction
approach, without significantly deteriorating transcription accuracy. The fact that the time
required to transcribe clear speech was not significantly different reconfirms the findings
of previous studies suggesting the effectiveness of the post-correction approach for clear
speech, as mentioned in Section 8.1.1.

In addition, it is notable that the baseline condition showed a significant increase in the
time required to transcribe unclear speech (p = 0.004) according to the one-way ANOVA.
Here, the recognition results for the radio and historical clips obtained by the ASR model
that were presented to the workers exhibited a CER value that was greater than 30 %.
Thus, the time increase can be said to be analogous to previous studies [88, 280], which
demonstrated that recognition results in the post-correction approach should be sufficiently
accurate (e.g., less than 30 % WER). On the other hand, the proposed condition did not
exhibit a significant difference in the time spent across the three types of speech. This
highlights the effectiveness of BeParrot, as it did not exhibit a time increase against such
unclear speech.

Also, the workers’ responses for the NASA-TLX items were compared between the two
conditions in the same manner as Zhang et al. [369]. The results are shown in Figure 32,
where the higher score indicates a higher stress level for each of the six items. In total, no
significant difference was found in the obtained scores, which implies that BeParrot allowed
the workers to complete the transcription task without requiring extra stress compared to
the conventional post-correction approach. However, the scores indicate that the amount of

23Note that the clip of clear speech used for the practice was a recitation of a famous children’s story and
independent of the six clips prepared in Section 8.3.1.

24100− 1823.2 (radio, proposed)+1408.4 (historical, proposed)
2758.1 (radio, baseline)+2004.6 (historical, baseline) = 32.14(%)
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physical effort required for the transcription task was reduced with the proposed condition.
This suggests that respeaking is less physically demanding compared to correcting erroneous
recognition results using a keyboard.

Figure 32: Comparison of worker cognitive load based on NASA-TLX (error bars indicate 95%
confidence intervals).

Furthermore, the interaction logs of the workers suggested the effectiveness of the
parameter adjustment feature. For example, Figure 33 shows the transition of the playback
speed that the workers assigned to the same clip experienced as a result of the manual
and automated adjustment. As can be seen, the playback speed was gradually reduced
automatically until it reached a specific value that seemed to be an optimal value for each
worker. In other words, the playback speed BeParrot stopped slowing down (i.e., the speed
that allowed each worker to perform respeaking without retrying) differed for each worker.
This confirms the validity of its design, which was based on the report by Fresco [251],
as described in Section 8.2.1. In addition, from the fact that the worker denoted by the
purple solid line increased the playback speed at the last part of the task, we can infer that
the worker got familiar with respeaking and did so. While further discussion is presented
in Section 8.3.5, these results imply the effectiveness of the design of BeParrot, especially
regarding its power of fostering users’ skill of respeaking.

8.3.5 User comments

As explained in Section 8.3.2, the crowd workers assigned to the proposed condition were
asked to complete a questionnaire. According to their responses, they overall considered
BeParrot to be useful and expressed their willingness to continue using it.

This was my first time using this kind of transcription tool, but once I got used
to it, I was able to transcribe a little faster, which I found very useful.

I felt that using the voice input function would make the transcription process
smoother and less stressful.

It was very easy because what I had to do was limited to minor adjustments as
long as I focused on listening.
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Figure 33: Transition of playback speed in the relative time of the transcription task (each line
represents the transition of different workers assigned to the same clip).

In addition, the key features of BeParrot described in Section 8.2.1 received positive
comments. In particular, the workers frequently commented on the parameter adjustment
feature. For the playback speed, some workers indicated the usefulness of the control slider,
and others mentioned that the automated speed adjustment was effective.

Every time I retried the transcription, it automatically slowed down the playback
speed, which saved me from having to do it myself and made the task easier.

The slowing down of the playback speed made it easier to listen and was very
useful for correcting mistakes.

It played faster the first time and slower since the second time, which was
helpful in allowing me to transcribe more efficiently and accurately.

The responses indicated that, as well as the adjustment of the playback speed, the adjustment
of the segment length eased the complexity of respeaking.

When the segment was long, I had my hands full memorizing the content, and
it was difficult to read it aloud simultaneously. Thus, I actually utilized the
adjustment feature. When dealing with complicated contents or unfamiliar
fields, I think that the length adjustment function is indispensable to make sure
that I can understand each phrase. Then, the relistening to long segments can
be avoided, and the time required in total can be shortened.

I felt it very difficult to transcribe a long segment. The system then automatically
adjusted the length of the segment to be shorter, and after that, the transcription
process became much easier.

These responses confirm that the parameter adjustment feature helped novice users overcome
the difficulty of respeaking, supporting the design of BeParrot described in Section 8.2.1.
Note that this feature is newly introduced for respeaking with BeParrot, informed by
the strategies of Section 3.2, to help users get accustomed to it. Previous applications
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of respeaking for the subtitle creation for television programs, which were mentioned in
Section 8.1.2, did not allow such a feature since changing the playback speed or retrying
the same segment makes it impossible to create subtitles in real time.

For the feedback feature, some workers said that it helped them become more aware of
their pronunciation habits.

The presentation of the number of incorrect pronunciations was very helpful. I
realized that I have a bad tongue and I needed to be more careful in my daily
life.

It was useful because it made me aware of my pronunciation, especially about
the “la” and “na” columns [moras starting with the consonants of “l” and “n”]
that were displayed as often mispronounced.

These responses further corroborate the importance of the interaction design that fosters
human learning and its potential to facilitate efficient collaboration with off-the-shelf models.
However, some responses suggested that monitoring the feedback while respeaking was
difficult.

I was engrossed in uttering what I heard and did not look at the feedback at all.

My mind was so occupied with the transcription task that I did not think to
refer to it much.

One worker mentioned that they had trouble improving their pronunciation from the display.

The presentation of pronunciations that tend to be misrecognized let me carefully
utter them. Still, they were not recognized accurately.

These responses suggest that there is room for improvement regarding the presentation of
the feedback. For example, showing the feedback after a user completes a transcription
task is a possible option to ease the difficulty of referring to the feedback during respeaking.
This would give them time to reflect on the feedback and consider how to improve their
pronunciation in future tasks. For example, computationally providing auditory feedback
might also be helpful for them to improve their pronunciation [205].

8.4 Limitations

The results presented in Sections 8.3.4 and 8.3.5 demonstrate the effectiveness of BeParrot
as a tool for transcribing unclear speech using off-the-shelf ASR models. The results also
indicate that its design (i.e., the parameter adjustment and pronunciation feedback) helped
novice users perform respeaking. On the other hand, we can consider several limitations.
First, as the key component of BeParrot, there was an assumption that the accuracy of
the off-the-shelf ASR model that recognizes respeakers’ utterances should be high. This
limits the applicability of the presented interaction design, as it can be difficult to use
BeParrot for a specific type of speech, for which accurate ASR models have not been
developed (e.g., speech in languages with low resources). Consequently, evaluations in
various languages and cultural backgrounds would be demanded to increase the generality
of the results [175]. In addition, despite the efforts to use different types of audio clips, as
mentioned in Section 8.3.1, it is desirable to evaluate the effectiveness of BeParrot when
it is used to transcribe more diverse types of speech. For example, given the nature of
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respeaking, the difficulty of using BeParrot may increase when the speech to transcribe
contains spontaneous conversation by multiple people with many overlaps. The effectiveness
of BeParrot in transcribing longer speech (e.g., over an hour) is also worth examining,
as it will further clarify its longitudinal learning effect, which includes both that a user
becomes increasingly familiar with the interactive system and that the user improves their
pronunciation based on the feedback feature. Longer transcription tasks would also reveal
the effect on users’ cognitive load in comparison with conventional approaches.

8.5 Summary

This chapter presented BeParrot, an interaction design constructed for efficiently transcribing
unclear speech via respeaking with the help of off-the-shelf ML models. Guided by Strategy
#2 of Section 3.2, it features parameter adjustment and pronunciation feedback to enable
novice users to conduct and get accustomed to respeaking without extensive training. A user
study involving 60 crowd workers examined how BeParrot helps users transcribe different
types of unclear speech, such as speech with high levels of noise or reverberation. The results
demonstrate that, compared with a conventional approach, BeParrot makes transcription
tasks of unclear speech 32.2 % faster without losing the accuracy of transcriptions. From
this, we can infer that transcribing unclear speech should still be hard for either a human or
an off-the-shelf model alone. At the same time, BeParrot would be an illustrative example
showing that, even in such situations, humans and off-the-shelf models can work effectively
by preparing an interaction design that guides humans to adapt their skills. This point
affirms RQ1 and RQ2 of Section 3.4, given that the strategies generated the effective
interaction design for speech transcription.
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9 Discussions

So far, I have introduced five different interaction designs, all of which were designed based
on the strategies presented in Section 3.2 for the purpose of reconciling off-the-shelf ML
models with open-ended user needs. Based on the observations and findings from each
example, this chapter first provides a reflection on the research questions in Section 3.4.
This outlines the effectiveness of the proposed approach that focuses on the plasticity of
user needs and behaviors and conceptualizes the relationship between off-the-shelf models
and end-users as a bivariate problem. Also, this chapter discusses the limitations of the
proposed approach, such as ethical considerations, and its future directions to ensure that
it serves as a concept [282, 119] capable of generating new interaction designs.

9.1 Answers to the research questions

Table 24 presents the summary of the interaction designs presented, outlining how each
design addresses specific user needs using various off-the-shelf ML models. As discussed in
the respective chapters, these designs are based on the strategies introduced in Section 3.2,
and their effectiveness has been confirmed in different forms. It is notable that no training
of ML models has been involved to realize these diverse interaction designs. Returning to
the research questions posed in Section 3.4, it now seems appropriate to reflect on how
these designs align with and answer that initial inquiry.

RQ1: Can the above strategies generate diverse interaction designs against
open-ended user needs using off-the-shelf ML models?

To this question, we can conclude that the five examples presented an affirmative response.
Notably, by employing two different strategies, it was demonstrated that, even when an
appropriate human cognitive process to be utilized is absent, fostering human learning can
be an alternative way to generate interaction designs against different tasks across multiple
domains. While it is infeasible to deductively demonstrate that these strategies are truly
applicable to all open-ended user needs, I believe they are sufficiently robust to serve as a
generative concept to be referenced by developers and practitioners.

The five examples also affirmatively answer RQ2.

RQ2: Can the interaction designs generated from the strategies effectively
address user needs by using off-the-shelf ML models?

Here, each example employed a different evaluation scheme, ranging from user studies and
crowdsourcing-based evaluations to in-the-wild studies. Despite their variety, all these
evaluations aimed to ascertain the effectiveness of each interaction design, confirming its
capability of addressing user needs as well as some limitations. This suggests that the two
strategies are indeed capable of generating effective interaction designs, supporting the
overall effectiveness of the approach proposed in Chapter 3.

From these points, I conclude that the dissertation complemented the body of knowledge
with a generative concept by showing that the proposed approach to utilize off-the-shelf
ML models is contestable, substantive, and defensible. Notably, by retrospectively looking
back at the five examples in Table 24, we can confirm the generative power of this concept,
as it allows us to imagine further possible interaction designs. For instance, as depicted
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Table 24: Summary of the interaction designs presented in this dissertation.

Strategy Chapter Domain User needs Off-the-shelf models Interaction design

Strategy #1

Chapter 4 Video-based lectures

To return attention to a
video when distracted by
side tasks.

Vision-based distraction de-
tection models [298, 79]

Design an intervention based on the human nature of
speech communication that functions without consum-
ing conscious awareness.

Chapter 5 Intellectual tasks

To avoid procrastination
and maintain engagement
with tasks.

Large generative models [35,
250]

Deliver a context-aware and variational intervention
based on the elaboration likelihood model, avoiding the
risk of losing trust due to users’ high expectations.

Chapter 6 Photo editing

To edit photos exploratory
while incorporating a
professional-like style.

(The encoder network of)
style transfer models [170,
100]

Utilize parametric design to seamlessly integrate style
transfer to professional-like examples into the user’s
familiar design space.

Strategy #2

Chapter 7 Music composition

To compose music cre-
atively even with limited
musical knowledge.

Text-to-audio generation
models [177] and (the API
of) large language models

Facilitate users’ understanding of new vocabulary and
its impact on the generation results through iterative
exploration.

Chapter 8 Speech transcription

To transcribe speech that
is unclear for ASR models
efficiently.

Speech recognition mod-
els [101] (and their stream-
ing APIs)

Enable effective collaboration with models by helping
users improve their respeaking skills via interaction and
feedback.
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in Table 25, we can identify some common factors in the user needs that these examples
have addressed. From this observation, it can be inferred that, for example, when a user’s
long-term objectives and immediate desires are in conflict, it would be plausible to consider
employing Strategy #1. Of course, it is also possible to apply the proposed approach in
scenarios devoid of these factors (e.g., considering the use of off-the-shelf ML models would
be effective when user needs are urgent such that they do not allow the luxury of time to
prepare tailored ML models). Furthermore, augmenting Strategy #1 by utilizing insights
from social psychology, instead of individual cognitive processes, could enable addressing
societal needs with off-the-shelf models. These possibilities indicate that accumulating
applications of the proposed approach represents an intriguing direction for the future work
of this dissertation.

9.2 Ethical considerations

Meanwhile, I am aware of the ethical considerations necessary for the proposed approach.
First, as is common in all ML-based systems, clarifying the risks involved and providing
transparent explanations and necessary oversight will likely be broadly demanded, in line
with requirements like those of the EU AI Act [75]. In addition, particularly for interaction
designs that focus on the plasticity of the human side, there is an undeniable potential
to inadvertently alter user behavior. From this perspective, obtaining informed consent
is crucial upon the deployment of interaction designs based on the proposed approach,
and thus, this dissertation has attempted to present interaction designs that function
effectively even when subjected to the process of informed consent. Indeed, this dissertation
aligns with the shared recognition of the importance of human safety to the discussions
around human-centered AI. At the same time, it has also focused on the constraints arising
from paying less attention to the plasticity of the human side. Understanding this nuance
might be facilitated by embracing the idea of humanity-centered design, an idea advocated
by Norman [215], who significantly contributed to the proliferation of human-centered
design [217] and later pointed out its limitations [216]. Humanity-centered design goes
beyond individual user experiences and interactions, considering broader implications for
human values, societal impact, and ethical considerations, emphasizing the importance of
a holistic view of humanity. In this context, the dissertation has proposed an approach
to address individual user needs by utilizing off-the-shelf ML models, with an eye toward
the sustainability of the entire ecosystem. This approach embodies the belief that it is
possible to balance considerations for individual users with holistic sustainability. However,
identifying specific means to achieve this balance remains a part of future work.

At the same time, this point of view necessitates the consideration of sustainability
around the community, supporting the creation and sharing of off-the-shelf ML models.
As described in Section 2.2, the current community consists of various stakeholders from
academia, industry, and start-ups. While there have been some studies on how off-the-
shelf models were created and shared within communities like HuggingFace [43, 140], the
discussion on how to support such activities in a sustainable manner is still limited. If
the use of off-the-shelf models by end-users becomes more widespread, it could potentially
contribute back to the community, fostering even more efficient model creation. Discussing
these possibilities from a system point of view, with the aim of serving humanity, is indeed
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Table 25: Common factors behind the user needs that have been addressed by the presented interaction designs.

Strategy Chapter User needs Factors

Strategy #1

Chapter 4
To return attention to a video when dis-
tracted by side tasks.

There is a conflict between a user’s long-term objectives and immediate desires.

Chapter 5
To avoid procrastination and maintain en-
gagement with tasks.

Chapter 6
To edit photos exploratory while incorpo-
rating a professional-like style. There is a difficulty in clearly and

explicitly defining a user’s objectives.

Strategy #2
Chapter 7

To compose music creatively even with
limited musical knowledge. There is a gap between an ML model’s

expected inputs and a user’s capabilities.
Chapter 8

To transcribe speech that is unclear for
ASR models efficiently.
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another avenue for future work.

9.3 Toward grassroots development of interactive systems harnessing
off-the-shelf machine learning models

As stated in Chapters 1 and 3, the ultimate goal behind presenting the proposed approach
as a generative concept is realizing a world where end-users can develop interactive systems
using off-the-shelf ML models to address their open-ended needs in a grassroots manner.
This ambition is partly driven by the expectation that the barriers for end-users to de-
velop interactive systems will be lowered through the advancement of ML technologies.
Specifically, several methods utilizing off-the-shelf ML models, like Codex [48], have been
proposed to assist in programming [375, 255, 171], holding the promise of enabling even
beginners to develop a variety of systems [138]. In other words, it becomes conceivable
that end-users could consult off-the-shelf models to develop their own interactive systems
harnessing other off-the-shelf models. Indeed, during the COVID-19 pandemic, I observed
practitioners utilizing off-the-shelf tools to address their unique communication needs in
complex situations [341], which has made me believe the plausibility that such grassroots
solutions will gain traction. Note that such an idea of enabling end-users to develop or cus-
tomize systems has been discussed as end-user programming, end-user software engineering,
or end-user development [36, 172, 153, 19]. There have also been proposals of toolkits that
enable end-users to prototype interactive systems using ML models [334, 74].

This dissertation complements this thread of research from a different layer by offering
strategies on how to reconcile off-the-shelf models with user needs on top of such toolkits.
Specifically, if the challenges for preparing tailored ML models persist, as mentioned in
Section 2.3, the next challenge for end-users would indeed be how to effectively utilize
off-the-shelf models to solve individual needs. Then, I expect that the proposed approach
provides them with a good starting point, as a generative concept. Furthermore, we can
envisage the creation of an ML-based system that serves as a consultative tool for users
(e.g., a conversational agent) by harnessing the presented strategies. If this system can
effectively guide users in addressing their individual needs using off-the-shelf models, it
would lead to the (semi-)automatic generation of effective interaction designs.

At the same time, this dissertation considers the strategies outlined in Section 3.2 not
as the only possible means and acknowledges the potential for exploring other strategies.
Here, as a discipline closest to understanding humans within computer science, I believe
that HCI researchers are uniquely positioned to codify further contributions in making the
human side more approachable to off-the-shelf ML models. In this regard, I look forward
to future research regarding the utilization of off-the-shelf models that would span from
specific instances to general theories.
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10 Conclusion

Our repertoire of food-processing methods altered the genetic selection pressures
on our digestive system by gradually supplanting some of its functions with
cultural substitutes... The energy savings from the externalization of digestive
functions by cultural evolution became one component in a suite of adjustments
that permitted our species to build and run bigger and bigger brains. – Joseph
Henrich [114]

This dissertation proposed an approach that utilizes the power of interaction design
to address open-ended user needs by leveraging off-the-shelf ML models. Its underlying
philosophy is to conceptualize the relationship between off-the-shelf models and end-users as
a bivariate problem. This yielded strategies for generating interaction designs that make the
human side approachable for off-the-shelf ML models. The effectiveness of these strategies
was confirmed through five actual examples of interaction designs that were constructed
against different tasks across various domains, suggesting that the proposed approach can
serve as an actionable guidance or concept to generate new interaction designs.

As mentioned at the beginning of this dissertation, plasticity is one of the special
features of the human brain [300, 268]. This means that our knowledge and behavior are
influenced by external environments—including tools—which may also affect evolutionary
pressure [114]. It would be one of the reasons why a holistic perspective is required in
designing interactive systems [215] so as not to unintentionally affect individual users, or
even humanity. Simultaneously, this dissertation suggested that there are discoveries to
be made by intentionally focusing on human adaptability. With this in mind, I hope to
contribute to the realization of a world where humans and machines co-learn, thereby
expanding the frontiers of humanity.
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